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Corners: an algebraic approach
Aborbing boundary condition Look for relations at corners (Jy; that

complement (BC), verified at order 2 by plane wave of direction d,: comes

down to combinations of scalar products.

Then insert these corner conditions into the weak formulation of (BC), which
leads to the definition of a global operator R : u € L*(I") = ¢ € L*(T)
such that p € H (T')(~= (w) '0pu) is the solution to
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with oy, Bi € 1R,

Series of properties: R is well-defined, | R|| zz2ry) < 1, R # R*, R+R* > 0,
for {2 a K-sided regular polygonal domain approximating the disc of radius
r as K — oo, the ABC converges towards

(1 : 0; : (1+ 03)) Oru — wu = 0.
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Transmission conditions Adapting this ABC into a TC leads to

APt — w2up+1 — f €,
(On, — wT;) us — (O, + wT7) U 6’@ N 0, (2)
(On, — wT}) ul™ =0, o0, NT.

The algorithm for f = 0 1s endowed to a decreasing energy
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Key property for the prootf: the isometry
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in a given norm associated to the spectral decomposition of T; 4+ T7*.

different ABCs vs reference solution

Setting

Initial problem: 2D Helmholtz with Sommerfeld radiation condition
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Objective: dcrive a DDM with 2"
order absorbing boundary condition
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214 order Robin type transmission A
conditions where T' ~ (1 — 550;) !

6’2)8 —wu =0 (BC)

(On — wT)ul™ = — (0 + wT) Tk ()

(TC) Qext

Problem: corners like (), cross-points like X

Corner Cross-point d, = 3
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Notations:
domain decomposition US);; exterior boundary I' := 0€2; oriented inter-

compactly supported source supp f C {2; non-overlaping

faces 2;; = 02 N O€);; skeleton X 1= U;;2;; natural exchange operator
[1, s.t. (Iv)lx, =

Two originalities:

e transmission operators 1" # 1™ by contrast to work by P. Joly et al., X.
Claeys and E. Parolin

e cach DDM 1s endowed to a decreasing global energy on the skeleton

DDM with new ABC vs monodomain sol.
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Cross-points: a more abstract frame

Similarily to what was developed for the corners, we work with cross-points

conditions of type
Oror + A", = 0, with A" € 1My (R),

where ¢, is a vector gathering the unknowns standing for (ww) '0uu on
cach side of the the d, interfaces intersecting in X,. We will also re-
quire that A" = +H" for a symmetric matrix A", and define an operator

T :ue€ LX) — ¢ € L*(X) such that ¢ € H, (X) is the solution to
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Again, one has that T" is well-defined, ||T||zp2x)y < 1. T # T T+T™ > 0,
and one can define an H; (X)) equivalent norm based on the spectral decom-
position of T" 4+ T™, and get a similar isometry to (3).

Under the compatibility assumption that 11711 = 7™, the DDM writes

—AufH — wQufH - 1 ().
(On —wT)uy = —I1 (0 + wT™) uy, X, (5)
(Op — W) u{zﬂ =0, I

and 1t 1s endowed to the descreasing energy for f = 0
B = |[[(Dn — T [2 =5, 0.
Using this proves convergence of the under-relaxed DDM, i.e. for a € (0, 1)

(O — wT) ul = —all (Oy + wT*) uls + (1 — @) (O — wT) ul,

The corner setting (d, = 2) fits in this frame, and one can prove that the set
of admissible matrices is not empty for cross points (d, > 3).
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