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Introduction générale

Les questions a l’origine de cette thése sont celles du comportement et de ’approximation de
solutions singuliéres aux équations de Maxwell résonantes dans un plasma hétérogéne et anisotrope.
Ce sont des équations aux dérivées partielles linéaires et dégénérées a I'intérieur du domaine sur
lequel elles sont posées.

Ces équations font partie des différents modeles utilisés pour étudier la fusion nucléaire [106, 17, 110].
Ce sont des modéles complexes et variés, et il est important d’en avoir des approximations numériques
précises et robustes. Les conditions de température et de densité a I'intérieur d’un tokamak sont
telles qu’on ne peut pas tout mesurer. Les équations qui décrivent le comportement d’un plasma,
comme les équations cinétiques, sont connues et ont été étudiées en détail. Mais la variété des échelles
caractéristiques et la non-linéarité de ces modéles font qu’il est difficile de les discrétiser, et on
travaille alors sur des modéles réduits. Il y a de nombreux régimes différents, ceux qui correspondent
a la réflexion et 'absorption d’ondes au coeur du plasma [107], aux intéractions du plasma avec
la paroi ou il n’y a plus d’équilibre des charges [4, 116], ou encore aux turbulences dues aux forts
gradients de température et qui affectent le confinement du plasma [58]. D’autre part, certains
phénomeénes correspondent & des fréquences précises et sont étudiés en régime harmonique en temps,
alors que d’autres requiérent une étude en temps long. Enfin, certains modéles sont posés sur une
géométrie réaliste, et exploitent par exemple la structure hamiltonienne en régime non-dissipatif,
tirent profit du fait que la dynamique des particules suit les lignes de champ [18, 21], tandis que
d’autres sont posés sur une géométrie simplifiée. Une source de questions originales consiste alors a
trouver comment aborder chacun de ces problémes de maniére & pouvoir le discrétiser avec précision.
Un autre intérét de ce sujet est 'actualité de ’enjeu énergétique industriel, qui permet notamment
des collaborations transdisciplinaires sur des projets de recherche comme ITER et 1’élaboration de
codes numériques associés.

Un plasma est un état de la matiére ou les particules chargées, ici les ions et les électrons, sont
libres. Les particules peuvent se déplacer sous 'effet d’un champ électromagnétique, et les noyaux
d’atomes peuvent éventuellement fusionner. Générer ces phénoménes de fusion nucléaire et récupérer
I’énergie ainsi créée est l'objectif des tokamaks. Dans ces machines, un fort champ magnétique
est imposé par des bobines externes et crée une asymétrie dans la réponse des particules. On
considére dans ce travail un champ imposé simplifié By, constant et de direction colinéaire a
I’axe toroidal z. Chacun des modéles évoqués plus haut comporte une description de ’évolution
du champ électromagnétique et une description de la dynamique des particules, couplées par le
courant généré par les particules et source des équations sur le champ. La description du champ
électromagnétique est faite par les équations de Maxwell. Dans le régime qui nous intéresse, celui des
résonances hybrides, nous utiliserons un modéle fluide pour les particules. On appelle ce couplage
entre des champs électromagnétiques et un fluide conducteur la magnétohydrodynamique. Nous
nous intéressons plus précisément au systéme d’Euler-Maxwell. On travaille en régime harmonique
autour de la fréquence w > 0 d’une onde plane incidente, dont on note k € C? le vecteur d’onde
associé. Les deux systémes d’équations se combinent alors pour former ce qu’on appelle ici le
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systéme d’équations de Maxwell résonantes qui porte uniquement sur le champ électrique
VAVAE—-¢E=0 dans QCR?

ot le tenseur de permittivité £, hétérogéne et anisotrope, varie en espace via la pulsation plasma
wp dont I'intensité est proportionnelle & la racine carrée de la densité électronique, et dépend
du champ magnétique imposé via la pulsation cyclotron w, dont l'intensité est proportionnelle a
celle du champ. Ce tenseur dégénére a 'intérieur du domaine le long de la courbe de résonance
hybride ¥ = {x € Q, w? = wg (x) + w?} dans le sens oil son coefficient diagonal o se comporte
comme une distance signée & cette courbe : positif d’un coté, négatif de 'autre, et nul sur la courbe.
Certaines composantes du champ électrique vont étre réguliéres, mais d’autres seront singuliéres et
non intégrables. On réintroduit un champ qu’on appelle magnétique et défini par B =V A E, au
lieu de (iw)~'V A E, pour des raisons pratiques.

Avant le début de cette thése, I’étude du probléme a été menée en dimension un, c’est & dire
sous ’hypothése d’un plasma ne variant que dans une direction € = () avec x dans I C R, et
sous I’hypothése d’une onde incidente avec une direction de propagation normale au fort champ
magnétique sous-jacent, k = (k,,0,0). L’hypothése d’incidence normale permet de découpler les
équations de Maxwell en un systéme sur (E,, E,) dit extraordinaire (X-mode) et une équation sur
E, dite ordinaire (O-mode). Une solution analytique a été décrite, mais I’approximation numérique
posait probléme pour deux raisons. D’abord, parce que le probléme est dégénéré et qu’il n’y a pas
unicité de la solution. Ensuite, parce que la solution analytique que nous cherchons & capturer est
singuliére : la composante E, est la somme d’une valeur principale en 1/x et d’une masse de Dirac,
non intégrables localement, et d’un reste de carré intégrable. Une méthode courante utilisée pour
résoudre numériquement ce probléme est de désingulariser les équations, en ajoutant de la friction
entre les particules. Cela correspond & prendre en diagonale de ¢ le coefficient « + iv, avec un v > 0.
C’est d’ailleurs via un principe d’absorption limite, en faisant tendre ce paramétre de régularisation
vers zéro, que la solution analytique a été obtenue. Mais ce petit paramétre impose au niveau
discret une contrainte non triviale sur les paramétres de discrétisation. Il est souhaitable de ne pas
imposer de contrainte sur le maillage pour pouvoir obtenir des résultats sans avoir a régler le pas de
discrétisation par rapport a v. Le réglage simultané de plusieurs petits paramétres est souvent source
de difficultés numériques. De plus, un maillage fin est cotiteux, et on veut pouvoir prendre un pas
de discrétisation raisonnable indépendamment du paramétre v qu’on fait tendre vers 0. Le premier
objectif de cette thése était donc de développer une méthode numérique pour 'approximation des
équations de Maxwell résonantes qui soit indépendante d’un paramétre de régularisation et capture
la solution analytique voulue. Pour en revenir au phénomeéne physique associé, le transfert d’énergie
de 'onde aux ions par résonance hybride, le probléme de la discrétisation par éléments finis des
équations régularisées avec une petite friction est illustré par ’observation de résonances proches de
I’antenne émettrice : il n’est pas clair que ces résonances soient justifiées ou qu’elles correspondent
4 un artéfact 1lié au manque de précision de la méthode numérique.

A cause du changement de signe de la permittivité, notre probléme est proche de 1’étude des
interfaces entre un métamatériau et un diélectrique. Dans ce cas, la permittivité, homogéne par
morceaux, ne dégénére pas. Elle est négative d'un coté de l'interface, positive de 'autre avec une
discontinuité. Le probléme est alors bien posé sous des conditions de compatibilité qui dépendent
des valeurs de ces permittivités et de la géométrie de I'interface. Mais lorsque le coefficient dégénére
sur la frontiére, et que la solution explose, on perd des informations nécessaires a la dérivation de
ces conditions. Il n’est plus possible d’utiliser les traces de Dirichlet ou les estimations elliptiques
de type Agmon-Douglis-Nirenberg utilisées par Bonnet-Ben Dhia, Chesnel, Ciarlet Jr. et Claeys
[34, 33, 36, 35] et Nguyen [91, 92].



Notre probléme est aussi a rapprocher de la théorie des équations elliptiques dégénérées avec un
opérateur différentiel qui & u associe —V - (aVu) et un coefficient o qui s’annule sur une partie
du bord. En séparant notre probléme de chaque coété de la courbe de résonance ¥, on obtient
deux équations signées qui dégénérent sur une partie du bord, le coefficient de permittivité étant
proportionnel & la distance au bord. Lorsqu’on travaille dans ’espace de Sobolev & poids associé
a ce coeflicient, le théoréme de Lax-Milgram et les résultats classiques de régularité elliptiques
se transposent dans ce cadre, voir 'étude de Baouendi et Goulaouic [7]. Dans notre cas, on a un
couplage de deux problémes dégénérés par la partie du bord qui correspond a la singularité, la
courbe de résonance. Et les solutions qui nous intéressent sont plus singuliéres que les fonctions
de ces espaces de Sobolev a poids : ce sont celles dont la singularité est critique par rapport a
ce poids précis. On reléve aussi I’étude de la régularité Holderienne locale des solutions d’EDP
dégénérées par Fabes, Kenig et Serapioni dans [49], mais dans un cas ou le poids est dans 'espace
de Muckenhoupt As, c’est a dire localement intégrable et d’inverse localement intégrable et qui
n’est pas notre cas ici. Il s’agit pour nous de trouver une condition de transmission & travers la
singularité. Cela est rendu possible par un théoréme d’injection compacte et par une décomposition
de la solution u en parties réguliéres solutions des équations elliptiques signées de chaque coté de la
courbe, et en une partie singuliére caractérisée par le flux ad,u a travers la courbe via une fonction
auxiliaire.

C’est par ce biais, et par la proximité avec la communauté travaillant sur I’élaboration de méthodes
numériques pour des problémes d’ondes électromagnétiques, que la décomposition de domaine a
été abordée dans cette thése. La question principale qui est posée, de maniére indépendante au
probléme de résonance hybride, est celle du traitement des coins sur la frontiére d’'un domaine dans
les méthodes de Schwarz sans recouvrement, avec comme objectif & terme de traiter les coins sur
les frontiéres de sous-domaines et les points de croisement. Pour pouvoir traiter numériquement des
problémes de propagation d’ondes acoustiques dans ’espace total R? ou R?, avec des termes source
et éventuellement des obstacles localisés, il est nécessaire de se ramener a un domaine borné Q. A
la frontiére de celui-ci, des conditions doivent alors étre imposées pour modéliser le comportement
dans l’espace total, régi par une condition de radiation & l’infini. Nous nous intéressons ici a
I'utilisation d’une approximation de cette condition de radiation par une condition aux bords
absorbante d’ordre 2. A cet ordre, il devient nécessaire de définir un traitement spécifique aux coins
présents sur 9§ pour une solution que I'on cherche dans H'(2). Les coins sont source d’erreurs
s’ils ne sont pas étudiés spécifiquement, et des phénomeénes de réflexion numérique ont lieu. Pour
les méthodes de décomposition de domaine, lorsque Q = US€); avec €; N ; = 0 pour tous i # j,
en plus d’une condition d’absorption sur le bord 0, des conditions de transmission sur chaque
frontiére entre deux sous-domaines adjacents doivent étre prescrites pour faire communiquer entre
eux les sous-domaines. Idéalement, on souhaite que ces conditions assurent la continuité de la
solution ainsi que celle de sa dérivée normale & travers chaque frontiére de sous-domaine u; = u; et
Onitt; = —0Opiu; sur 0§); N 0SY;. De méme, lorsque les sous-domaines ont des frontiéres en lignes
brisées, ou de maniére plus cruciale, aux points de croisement entre trois sous-domaines ou plus,
sans traitement particulier des coins les résultats numériques sont trés imprécis. Il est alors possible
de considérer une subdivision en couches de §2. Mais si I’on veut considérer des géométries obtenues
avec des générateurs automatiques de maillages, par exemple, il est nécessaire pour augmenter la
précision de répondre a la question du traitement des coins. L’objectif de notre travail est alors de
définir une condition absorbante d’ordre 2 aux coins qui puisse étre adaptée en une condition de
transmission.

Avant de préciser la structure de ce document, on note qu’il existe une autre grande famille de
modéles pour les particules qui ne sera pas abordée dans ces travaux : celle des modéles cinétiques
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et des équations de Vlasov-Maxwell. Ce sont alors les fonctions de distribution des particules, qui
décrivent leur répartition dans I’espace des phases, qui sont étudiées. Cela permet de décrire les
comportements d’une maniére plus fine, au prix d’une augmentation significative de la taille des
problémes : ce sont des modéles en dimension 7, en temps, en espace et en vitesse. Les modéles fluides
sont eux en dimension 4, en temps et en espace, et ils sont suffisants pour décrire le comportement
du plasma sous 'hypothése dite de plasma froid, ou & température finie et & pression donnée, voir
l'article de Bernstein et Trehan de 1960 [11], ou le cours plus récent de Dumont [41].

Structure du document et résultats principaux

Ce document est composé de deux parties indépendantes, dont les premiers chapitres sont des
introductions. Les notations de chaque partie différent sur quelques points. Certaines de ces notations
sont précisées dans un préambule page 17.

Une Premiére Partie regroupe les travaux effectués autour des équations de Maxwell résonantes.

Le Chapitre 1 commence par un exposé des principes de la fusion nucléaire par confinement
magnétique, et détaille ensuite les étapes de modélisation pour arriver au systéme d’équations qui
nous intéresse. Un lien est fait avec d’autres études mathématiques analysant ces phénomémes, et
on présente le cas de I’étude des équations en dimension un et en incidence normale. Pour finir, on
décrit les méthodes et les outils utilisés dans la suite.

Les Chapitres 2 et 3 sont des articles présentant respectivement 1’étude des équations en dimension
un et en incidence oblique k = (k,,0,k,), et ’étude des équations en dimension deux, avec un
tenseur homogene dans la direction z, et en incidence normale k = (&, 0,0).

Dans le cas unidimensionnel, la résolution des équations de Maxwell passe par celle dans H' du
systeme

—u’(z) + —N(z)u(z) =0 dans (—1,1)—{0} (1)

avec un coefficient réel a(x) = rz + O(2?), pour un r non nul, et avec une matrice complexe N
réguliére et bornée, a valeurs dans C2*2, dépendant elle-méme de «, telle que N(0) est de rang 1.
L’inconnue u, & valeurs dans C2, correspond aux composantes réguliéres E, et By, et les autres
composantes F,, F,, B, et B, sont définies a partir de celles-ci de de leurs dérivées. La composante
la plus singuliére est E,, définie & partir de E,/a et de B, /a. Associé a des conditions aux bords
mixtes en © = %1, ce probléme, qui consiste en deux EDO (équations différentielles ordinaires)
d’ordre deux associées & deux conditions aux bords et & une relation de continuité en x = 0, est
donc mal posé : il reste un degré de liberté & déterminer. On le régularise en prenant « + iv et la
matrice associée N” a la place de « et de N, et en gardant les mémes conditions aux bords. Sous
quelques hypothéses sur les conditons aux bords et la régularité des coefficients, les deux résultats
principaux sont les suivants.

Théoréme 1 (Corollaire 2.2.5). L’unique solution u” du systéme régularisé converge faiblement
dans H' vers une fonction ut. Cette fonction est une solution forte du systéme (1) en dehors de

x = 0 et vérifie les conditions auz bords associées. On l'appelle solution de viscosité limite.

Théoréme 2 (Théoréme 2.3.3). La solution de viscosité limite u™ est l'unique solution d’une
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formulation variationnelle mizte de la forme
Trouver ((u,s),A) € V x Q tel que

{ at((u,s),(v,t)) —=bv,\) = 0, V(v,t) eV,
b(u, /J’) = E([,L), Vp e QO~

La forme sesquilinéaire a™ est indexée ainsi pour insister sur le fait que c’est 1 qu’est comprise
I'information qui manquait dans le systéme initial et qui a été obtenue par absorption limite v — 0.
La seconde ligne de la formulation, qui implique la forme sesquilinéaire b et la forme antilinéaire
£, correspond au systéme initial (1) dont on impose la vérification sous forme de contrainte. Un
troisiéme résultat important de cette étude est la stabilité de la formulation mixte, schématisée en
Figure 1. Le paramétre v correspond a la modélisation de la friction entre les ions et les electrons,
que ’on prend en compte dans la dynamique des particules, et dans un autre régime que celui
qui nous intéresse ici, il peut ne pas étre négligeable. Il est pratique d’avoir une implémentation
similaire pour ces différents régimes. Pour v > 0, une formulation mixte similaire avec des formes a”,
b¥ et un espace Q¥ correspondants est alors décrite. Elle correspond alors d’une certaine maniére a
une formulation asymptotic preserving [73] du probléme régularisé avec un petit v > 0. Pour les

{ at((u,s),(v,t)) —b(v,\) = 0, V(v,t) eV
b(u, p) = (p), Vp e QO

v (u,v) = £(v),
Vv e H x H!
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{ a’((u,s), (v,t)) = b7 (v, A) 0, V(v,t) eV
b (u, p) = Up), Vpeq

FIGURE 1 — Schéma des liens entre les différentes formulations variationnelles associées a (1) et a
sa régularisation. L’inconnue principale u est toujours cherchée dans H! x H'. Le cadre autour
de la formulation en haut & gauche est en pointillés rouges pour signifier qu’elle est mal posée
contrairement aux trois autres.

deux formulations avec régularisation, non mixte et mixte en bas en Figure 1, 'inconnue principale
u de I'unique solution prend la méme valeur u”. La formulation non mixte dans H' x H' n’a pas
de limite quand v — 0 & cause du coefficient 1/a. Dans la formulation mixte, I'espace test H* x H!
est réduit & Q¥, qui converge vers Q¥ et pour lequel b(u,v) a un sens pour u € H! x H! et v € QY.
On souligne que le choix de I'espace test Q¥ C H' x H' requiert un soin particulier : le choix simple
de prendre Q¥ = Q° ne convient pas par exemple. D’un point de vue physique, ces formulations, et
plus précisément les formes a™ et a”, sont en fait liées & la dissipation d’énergie associée & I’'onde
électromagnétique qui a lieu & la résonnance.

Ce chapitre est un article soumis en avril 2018 et accepté en mai 2019 par le Journal of Computational
and Applied Mathematics [93] complémenté d’une annexe sur le modéle mathématique correspondant
au second cas test numérique.

En dimension deux, quelques simplifications aménent a I’étude de I’équation aux dérivées partielles
suivante

—V  (a(x)Vu(x)) —u(x) =0 dans © C R% (2)

Ici le coefficient réel « est proportionnel & la distance signée & une courbe X réguliére, simple
et fermée, a l'intérieur de 2. La dégénérescence a lieu sur cette courbe, et le domaine €2 est
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séparé par X en deux sous-domaines, €27 ol « est positif et 25 ol « est négatif. L’équation est
elliptique dégénérée sur 25 et elle I'est aussi & un terme compact prés sur ;. A priori, il n’est plus
possible d’identifier de composantes du champ EM réguliéres en fonction desquelles exprimer les
composantes singuliéres comme en dimension une : la dépendance en une seconde variable d’espace
couple fortement les équations sur les différentes composantes du champ FE,, E, et B,. Chaque
champ aura une composante réguliére et une composante singuliére. C’est 'étude de 1’équation (2)
en 1D qui va nous indiquer le type de singularité attendu, a savoir un logarithme en la distance a
3, et surtout indiquer I’ansatz pour la décomposition en parties réguliére et singuliére. On utilise
ensuite le fait que bien que les traces de Dirichlet et de Neumann sur ¥ du logarithme de la distance
n’existent pas, la trace de Neumann a poids ad,, existe, et on introduit une variable auxiliaire g
définie sur la courbe X et qui prend la valeur ad,u. La partie réguliére de la solution est dans le
Sobolev & poids des fonctions de carré intégrable v telles que |a||Vv|? soit intégrable, et la partie
singuliére est caractérisée par cette variable auxiliaire définie sur ¥ facteur d’un logarithme. Comme
en dimension un, c’est par un principe d’absorption limite via la régularisation « + iv qu’on obtient
la formulation & v = 0T. On a le résultat d’existence et d’unicité suivant.

Théoréme 3 (Théoréme 3.4.3). La limite formelle v = 0T de la solution de I’équation (2) régularisée
est l'unique solution d’une formulation variationnelle mixte de la forme

Trowver (((u,g),h),A) € V x QV tel que
{ af (((w,g),h), (v, k), 1)) = b((v, k), A) 0,  V((v,k),l)eV,

b((u,9), 1) = {(w), Y € QO.

Par rapport a la formulation du Théoréme 2 du chapitre précédent, l'inconnue principale u, réguliére,
est remplacée par (u,g) qui comprend les composantes réguliéres sur 7 et sur 5 dans u et la
caractérisation de la singularité le long de ¥ dans g, et les scalaires s et ¢ sont remplacés par h
et [ des fonctions & valeur sur ¥. La forme sesquilinéaire b correspond aux équations elliptiques
dégénérées sur chaque sous-domaine, et la forme a; correspond encore une fois & une information
recouverte par absorption limite. Le sous-indice r indique une régularisation le long de la courbe de
singularité. Elle est a relativiser par rapport a la régularisation de la singularité via le paramétre v.
Bien que cette régularisation ait été utilisée pour obtenir de la coercivité, il semble qu’elle n’a pas
d’incidence sur les résultats numériques.

Ce chapitre est un article soumis [94].

En Chapitre 4, on présente ensuite quelques résultats d’analyse numérique associés aux études en
dimension un et deux. Un premier résultat issu de la littérature est cité concernant ’estimation
d’erreur pour la discrétisation du probléme par éléments finis dans le cas ol le probléme est bien
posé. Les éléments et les maillages choisis pour la discrétisation de chaque probléme sont présentés.
Une table de convergence a double entrée concernant les trois formulations bien posées en dimension
un, voir la Figure 1, est aussi donnée. On aborde ensuite la relaxation de la régularisation dans le
cas 2D, et un second résultat issu de la littérature est présenté concernant ’estimation d’erreur
dans le cas ou le probléme n’est pas coercif dans la méme norme qu’il n’est continu.

Cette partie se termine sur une question de modélisation en Chapitre 5. On montre que la méthode
des fonctions manufacturées peut étre adaptée & un modéle prenant en compte plus de physique,
avec I'ajout d’effets de température finie : c’est le modéle de plasma tiéde. Dans ce modéle, sous
certaines hypothéses reliant le paramétre de viscosité et le paramétre de température, les termes de
viscosité ne sont plus linéaires d’ordre 0 comme pour le plasma froid mais différentiels.

Une Seconde Partie est dédiée au traitement des coins dans les méthodes de décomposition de
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domaine pour la propagation d’ondes.

Le Chapitre 6 est une introduction aux méthodes de décomposition de domaine. Aprés un bref
retour sur ’historique de ces méthodes, imaginées pour résoudre ’équation de la chaleur sur des
géométries complexes par Schwarz a la fin du dix-neuviéme siécle et utilisées depuis les années 90
pour faire du calcul paralléle et du préconditionnement de systéme linéaire, on présente ensuite
plus en détail 1'usage qui en est fait aujourd’hui et les difficultés rencontrées dans le cadre de
I’approximation de solutions de ’équation de Helmholtz.

Dans le Chapitre 7, une méthode est proposée qui prend en compte les coins sur le bord du
domaine en dimension deux. On commence par définir une condition aux bords absorbante globale
pour un domaine polygonal, puis celle-ci est adaptée pour une résolution du probléme en utilisant
une méthode de décomposition de domaine. Les conditions présentées sont basées sur des relations
algébriques et font intervenir des variables auxiliaires.

Ce chapitre fait 'objet d’un article en préparation.






(zeneral introduction

The questions at the origin of this thesis are the behavior and the approximation of singular
solutions to resonant Maxwell’s equations in a heterogeneous and anisotropic plasma. They are
linear partial differential equations that degenerate inside the domain of interest.

This system of equations is one of the various models used to study nuclear fusion [106, 17, 110]. It
is important to be able to have accurate and robust numerical approximations of their solutions
because the temperature and density conditions inside a tokamak are such that it is unconcievable
to measure everything. Equations describing the behaviour of a plasma, such as kinetic equations,
are known and have been studied thoroughly. But the variety of characteristic scales and the
non-linearity of these models make it difficult to discretize them, we thus use reduced models.
There are many different regimes, those for the reflection and absorption of waves in the core of
the plasma [107], those for the interactions of the plasma with the walls where there is no charge
equilibrium any longer [4, 116], or those for the turbulences due to high temperature gradients
and which affect the confinement of the plasma [58]. Moreover, some phenomena correspond to
specific frequencies and are studied in a harmonic regime in time, while others require a study
in long time. Finally, some models are based on realistic geometries, and exploit, for example,
the Hamiltonian structure in non-dissipative regimes, take advantage of the fact that the particle
dynamics follow the field lines [18, 21], while others are based on simplified geometries. A source
for original questions consists in finding ways to adress each of these problems in such a way that
they can be accurately discretized. Another interest of this subject is the relevance of the industrial
energy issue, which allows for transdisciplinary collaborations on research projects such as ITER
and the development of associated numerical codes.

The advantage of a plasma is that it is a state of matter where charged particles, here ions and
electrons, are free. Particles can move under the effect of an electromagnetic field, and atomic nuclei
can eventually fuse. Generating these nuclear fusion phenomena and recovering the energy created
is the objective of tokamaks. In these machines, a strong magnetic field is imposed by external coils
and creates an asymmetry in the particle response. In this work, we prescribe a simplified magnetic
field By, constant and of colinear direction to the toroidal axis z. Each of the models mentioned
above includes a description of the evolution of the electromagnetic field and a description of the
dynamics of the particles, coupled by the current which is generated by the particles and is a
source for the equations on the field. Maxwell’s equations describe the electromagnetic field. In the
regime of hybrid resonances, which is the one we are interested in, we choose to use a fluid model
for the particles. This coupling between an electromagnetic field and a conductive fluid is called
magneto-hydrodynamics. We are more specifically interested in the Euler-Maxwell system. We
work in the harmonic in time regime around the frequency w > 0 of an incident plane wave, for
which we note k € C? the associated wave vector. The two systems of equations are then combined
to form what is called in this thesis the system of resonant Maxwell equations, which only acts on
the electric field unknown

VAVAE—-c¢E=0 in QCR?

where the heterogeneous and anisotropic permittivity tensor £ depends on space via the plasma
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frequency w, whose intensity is proportional to the square root of the electronic density, and also
depends on the magnetic field By via the cyclotron frequency w,. whose intensity is proportional to
the fields intensity. This tensor degenerates inside the domain, along the hybrid resonance curve
Y= {x €N W= wg (x) + wf}, in the sense that its diagonal coefficient o behaves as a signed
distance to this curve: positive on one side, negative on the other side, and zero on the curve. Some
components of the electric field will be regular, but some will be singular and non integrable. For
practical reasons, we reintroduce a field that we call magnetic field, defined as B = V A E instead

of (iw)"!V A E.

Prior to this work, the study of the problem was carried out in dimension one, i.e. under the
hypothesis of a plasma varying only in one direction £ = g(z) with = in I C R, and under the
hypothesis of an incident wave with a propagation direction k = (k,,0,0), normal to the bulk
magnetic field. The normal incidence hypothesis allows to decouple Maxwell’s equations into a
system on (Eg, E,) called extraordinary mode (X-mode) and an equation on E, called ordinary
mode (O-mode). An analytical solution was described, but the numerical approximation remained
problematic for two reasons. First, because of the degeneracy of the problem and the non uniqueness
of the solution. Second, because the analytical solution we are trying to capture is singular: the F,
component is the sum of a principal value in 1/2 and of a Dirac mass, not integrable locally, and of
an square integrable remainder. A common method for the numerical resolution of this problem is
to desingularize the equations, by adding friction between ions and electrons. This corresponds
to taking as diagonal coefficient of £ the term « + iv, for v > 0. Incidentally, it is also by using
this regularization that the analytical solution was obtained, making the parameter v go to zero
via a limit absorption principle. But this small parameter imposes a non-trivial constraint on the
discretization parameters at the discrete level. In general terms, we do not want any constraint on
the mesh size, to be able to obtain results without having to adjust the discretization step compared
to v. The simultaneous adjustment of several small parameters often causes numerical difficulties.
Moreover, a fine mesh is costly, and we want to be able to take a reasonable discretization step
independently of the parameter v which is intended to go to 0. The first objective of this thesis
was therefore to develop a numerical method for the approximation of resonant Maxwell equations
that is independent of this regularization parameter, and which captures the desired analytical
solution. In regard of the associated physical phenomenon, which is the transfer of energy from
the wave to the ions by hybrid resonance, the problem of the finite element discretization of the
regularized equations with small friction is illustrated by the observation of resonances close to
the transmitting antenna: it is not clear whether these resonances are justified or whether they
correspond to an artifact related to the lack of precision of the numerical method.

Because of this sign changing permittivity, our problem is related to the study of interfaces between
a metamaterial and a dielectric. In this case, the permittivity, homogeneous by parts, does not
degenerate. It is negative on one side of the interface, positive on the other, with a discontinuity
in between. The problem is then well posed under some compatibility conditions that depend on
the values of these permittivities and on the geometry of the interface. But when the coeflicient
degenerates on the border as in our model, and that the solution blows up, we lose information
required to derive these conditions. It is no longer possible to use Dirichlet’s traces or Agmon-
Douglis-Nirenberg’s elliptic estimates used by Bonnet-Ben Dhia, Chesnel, Ciarlet Jr. and Claeys
[34, 33, 36, 35] and Nguyen [91, 92].

Our problem is also connected to the theory of degenerate elliptic equations with a differential

operator —V - (aVu) and a coefficient o which vanishes on a subset of the boundary. By splitting
our problem on each side of the resonance curve, we obtain two signed equations that degenerate
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on a subset of the boundary, the diagonal coefficient of the permittivity being proportional to the
distance to the boundary. Working in the weighted Sobolev’s space associated to this coefficient,
the Lax-Milgram theorem and classical elliptic regularity results can be adapted to this framework,
see the study by Baouendi and Goulaouic [7]. In our case, however, we consider a coupling of
two degenerate problems through the part of the boundary that corresponds to the singularity,
the resonance curve. The solutions we are interested in are more singular than the functions in
these weighted Sobolev spaces: their singularity is critical with respect to the weight. We also note
the study of the local Holderian regularity of solutions to degenerate PDEs by Fabes, Kenig and
Serapioni in [49], but in a case where the weight is in the space of Muckenhoupt As, i.e. locally
integrable and of locally integrable inverse, which is not our case here. In our case, it is a question
of finding a transmission condition through the singularity. This question is solved by using a
compact injection theorem and by decomposing the solution u into a regular part that is a solution
of the signed equations on each side of the curve, and into a singular part characterized via an
auxiliary function by the flow ad,u through the resonant curve.

It is through this bias, and by the proximity to the community working on the development
of numerical methods for electromagnetic wave problems, that domain decomposition has been
addressed in this thesis. The main question here, which arises independently of the hybrid resonance
problem, is the one of corner treatment in Schwarz’s methods without overlap. The issue of corners
on the boundary of the domain is tackled in this work, with in perspective the extension of the
results to corners on subdomain boundaries, and ideally to cross-points between more than three
subdomains. In order to be able to address numerically problems of acoustic wave propagation
in the total space R? or R? with localized source terms and obstacles, it is necessary to start by
truncating the free space into a bounded computational domain 2. On the boundary of this domain,
conditions must therefore be prescribed to model the behaviour in the free space, which is governed
by a radiation condition at infinity. We are interested here in the approximation of this radiation
condition by a boundary condition, thus called absorbing, of second order. At this order, for an
H(Q) solution, it becomes necessary to define a specific treatment at the corners of 9Q. Without
any treatment, corners are a source of error, and a phenomenon of numerical reflection occurs.
For domain decomposition methods, when 2 = UQ; with ©; N Q; = 0 for all i # j, in addition to
an absorbing boundary condition on the boundary 02, transmission conditions on each interface
between two adjacent subdomains must also be prescribed for the subsolutions to communicate.
Ideally, these conditions should ensure the continuity of the solution as well as the continuity of
its normal derivative across each subdomain interface u; = u; and Oyiu; = —0Opiu; on 0 N 082;.
Once again, when the interfaces between subdomains are broken lines, or more crucially, at cross
points where three or more subdomains meet, without any special corner treatment the numerical
results are not accurate. A possibility is to consider layered decompositions of the domain 2. But
if we want to consider geometries obtained with automatic mesh generators, for example, it is
necessary to tackle the question of corners in order to increase the accuracy. The idea of our work
is thus to define a second order absorbing boundary condition for corners that can be adapted into
transmission conditions.

Before describing more precisely the structure of this document, we point out that there is another
large family of particle models that will not be addressed in this work: kinetic models and Vlasov-
Maxwell equations. In these models, it is the particle distribution functions, which describe their
distribution in the phase space, that are studied. This makes it possible to describe behaviours
more accurately, at the cost of a significant increase of the size of the problems: they are models in
7 dimension, in time, space and speed. The fluid models are in 4 dimension, time and space, and
are sufficient to describe the behaviour under the cold plasma hypothesis, or at finite temperature
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and given pressure, see Bernstein and Trehan’s 1960 paper [11], or Dumont’s more recent lecture
notes [41].

Structure of the document and main results

This document is composed of two independent parts, the first chapters of which are introductory.
The notations of each part differ on a few points. Some of these notations are defined in the
preamble page 17.

A First Part gathers the work on Maxwell’s resonant equations.

Chapter 1 begins with a presentation of the principles of nuclear fusion by magnetic confinement,
and then details the modelling steps to arrive to the system of equations of our interest. A link is
made with prior mathematical studies analyzing this phenomenon. The methods and tools used
in the sequel are described, and each idea is illustrated on the equations in dimension one and in
normal incidence to facilitate understanding.

Chapters 2 and 3 are research papers presenting respectively the study of equations in dimension
one and oblique incidence k = (k,,0, k. ), and the study of equations in dimension two, with a
homogeneous tensor in the z direction, and in normal incidence k = (k,, 0, 0).

In the unidimensional case, the resolution of Maxwell’s equations comes down to the resolution in
H' of

1
a(z)

—u”(z) + N(z)u(z) =0 in (-1,1)—{0} (1)
with a real coefficient a(x) = rz + O(z?), for a non zero coefficient r, and with a regular and
bounded complex matrix N with values in C2*2, itself depending on «, and such that N(0) is of
rank 1. The unknown u with values in C? corresponds to the regular components E, and By, and
the other components F,, E,, B, and B, are recovered from these two and from their derivatives.
The most singular component is E,, defined as a combination of E,/« and of B, /a. Coupled to
mixed boundary conditions at x = %1, this problem, which consists of two second order ODEs
(ordinary differential equations), two boundary conditions, and a continuity relation at = 0, is
therefore ill-posed: a degree of freedom remains to be determined. The problem is regularized by
taking « + iv and the associated matrix N” instead of a and N, and keeping the same boundary
conditions. Under some hypotheses on the boundary conditions and on the regularity of the matrix’
coeflicients, the two main results are the following.

Theorem 1 (Corollary 2.2.5). The unique solution u” of the reqularized system of equations
converges weakly in H' towards a function u*. This function is a strong solution to system (1)
away from x = 0 and verifies the associated boundary conditions. It is called the limit viscosity
solution.

Theorem 2 (Theorem 2.3.3). The limit viscosity solution u™ is the unique solution of a mized
variational formulation of type

Find ((u,s),A) € V x Q such that
{ at((u,s), (v,t)) = b(v,A) = 0, V(v,t) eV,
b(u, N) = K(“)7 Vp e QO~
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The sesquilinear form a7 is indexed with a plus sign to emphasize that it is there that lies the
information that was missing in the initial system, and that was obtained by limit absorption
v — 0F. The second line of the formulation, which involves the sesquilinear form b and the antilinear
form [, corresponds to the initial system (1). The fact we seek solutions of this system is thus
imposed as a constraint in the mixed variational form. A third important result of this study
is the stability of the mixed formulation, sketched in Figure 2. The parameter v corresponds to
the friction between ions and electrons, which is taken into account in the particle dynamics. In
another regime than the one of interest here, it may not be small. It is convenient to have a similar
implementation for the problem with viscosity and for the problem at the limit. For v > 0, a similar
mixed formulation with corresponding forms a¢” and b and a space @) is described. It can be
thought of as an asymptotic preserving formulation 73| of the regularized equation for small v > 0.
For both formulations with regularization, the mixed one and the classical one at the bottom of

{ at((u,s),(v,t)) =bv,\) = 0, V(v,t) eV
b(u, N) = K(“’)7 Vp € QO

b (u,v) = £(v),
Yve H x H!

R

{ au((uv 8)7 (V7t)) - biu(va )‘) = 07 V(V,t) eV
v (u, p) = Up), VYueqQ

Figure 2 — Scheme of the relations between the different variational formulations associated to (1)
and its regularization. The main unknown u is always seeked in H! x H'. The frame around the
formulation up left is dashed to signify it is ill-posed, unlike the three other formulations.

Figure 2, the main parts u of the unique solutions to these problems take the same value u”. The
classical non mixed formulation in H' x H' has no limit when v — 0 due to the singular coefficient
1/a. In the mixed formulation, the test space is reduced from H! x H! to QV, that converges
towards Q° for which b(u, v) is well defined for u € H! x H! and v € Q°. We point out that the
choice of the test space Q¥ € H! x H' requires particular attention: the simple choice of taking
Q" = Q° is not appropriate for example. From a physical point of view, these formulations, and
more precisely the forms a* and a”, are in fact related to the energy dissipation associated with
the electromagnetic wave that takes place at resonance.

This chapter is an article submitted in April 2018 and accepted in May 2019 in the Journal of
Computational and Applied Mathematics [93] to which is appended a section detailing the changes
made in the model for the second numerical test case.

In dimension two, a few simplifications of the model lead to the study of the following partial
differential equation
V- (a(x)Vu(x)) —u(x) =0 in QcCR2% (2)

Here the real coefficient « is proportional to the signed distance to a regular, simple and closed curve
Y. located inside €. This curve is the support of the degeneracy, and the domain 2 is separated
by ¥ into two subdomains, £2; where « is positive and 25 where « is negative. The equation is
degenerate elliptic on €5 and it is elliptic up to a compact term on ;. A priori, it is no longer
possible to identify regular EM field components according to which the singular components can
be expressed as in one dimension: the dependence in a second space variable strongly couples the
equations on the different components E,, F, and B,. Each component will have a regular part
and a singular part. The study of equation (2) in 1D indicates the type of the expected singularity,
namely a logarithm of the distance to 3. In particular, it gives a necessary insight to be able to
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define an ansatz for the decomposition into regular and singular parts. Although the Dirichlet and
Neumann traces of this distance to X logarithm do not exist, the weighted Neumann trace ad,
does. Therefore, we introduce an auxiliary variable g supported on the curve 3 which takes the
value ad,u. The regular part of the solution is in the weighted Sobolev space of square integrable
functions v such that |a||Vv|? is integrable, and the singular part is characterized by this auxiliary
variable defined on ¥ with a logarithm in factor. As in dimension one, it is by a limiting absorption
principle via the regularization a + iv that we obtain the formulation at v = 0F. We have the
following result of existence and uniqueness.

Theorem 3 (Theorem 3.4.3). The formal limit v = 0 of the solution to the regularization of
equation (2) is the unique solution to a mized variational formulation of type

Find (((u,g),h),A) €V x Q" such that
{ a; (((w,9), 1), ((v, k), 1)) = b((v, k), \) V((v,k),l) €V,
b((u7 g),u) = f(u), VN’ € QO‘

|
=

Compared to the formulation of Theorem 2 of the previous chapter, the main unknown u, regular,
is replaced by (u,g) which includes the regular components of u on ; and on Q9 and g, the
characterization of the singularity along X. The scalars s and t are replaced by h and [, functions
supported on X. The sesquilinear form b corresponds to the degenerate elliptic equations on each
subdomain, and the form a; corresponds once again to the information recovered by using the
limit absorption principle. The lower index r indicates a regularization along the singularity curve.
Unlike in the case of the desingularization via the parameter v, this regularization along ¥ does
not impact the singularity of the solution. Furthermore, although this regularization was used to
obtain coercivity, it does not appear to have an impact on the numerical results.

This chapter is a submitted article [94].

In Chapter 4, some numerical analysis results from the literature associated with the one and two
dimensional studies are presented. The first result concerns the error estimate of the discretization
of a mixed variational formulation by finite elements in the case the problem is well posed. The
elements and meshes chosen for the discretization of our formulations derived in 1D and in 2D are
presented. A double entry convergence table for the three well posed formulations in dimension
one, see Figure 2, is then given. Finally, we discuss the relaxation of the regularization in the 2D
case, and cite a second result from the literature that concerns error estimates in the case where
the problem is not coercive in the same norm as it is continuous.

This section ends with a modelling issue in Chapter 5. The first step towards an adaptation of
the manufactured functions method to a model that takes into account more physics are given. We
consider the addition of finite temperature effects: this is the warm plasma model. In this model,
under some assumptions binding the viscosity and the temperature parameters, the viscosity terms
are no longer linear and of respect to the electric field E as in the cold plasma model: they involve
the differential term V ® VE.

The Second Part of this thesis is devoted to corner treatment in domain decomposition methods
for the study of acoustic wave propagation.

Chapter 6 is an introduction to domain decomposition methods. After a brief historical review of
these methods, designed originally to solve the heat equation on complex geometries by Schwarz
at the end of the nineteenth century and used since the 1990s for parallel computing and linear
system preconditioning, we then present the difficulties encountered in approximating solutions to
the Helmholtz equation with these methods.

14



In Chapter 7, a method is proposed taking into account corners on the boundary of the domain
in 2D. First, a global absorbing boundary condition is defined for a polygonal domain. It is then
adapted in a domain decomposition framework. The conditions presented are based on algebraic
relations and involve auxiliary variables. This chapter is the subject of an article under preparation.
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Notations

Part 1
w, k frequency and wave vector of the wave sent by the antenna, fixed
E,B harmonic in time electromagnetic field, depends on space
By imposed static magnetic field, constant
U, harmonic in time speed of electrons, depends on space
Me electron mass
N, density of electrons, depends on space
Qe electron charge
J harmonic in time current, depends on space
€05 Mo vacuum permittivity and permeability
c speed of light in vacuum
£ permittivity tensor, space dependent
We = ‘quBOH electronic cyclotron frequency, constant
wp = :ZQZEO electronic plasma frequency, space dependent
P pressure tensor
l;B Boltzmann constant
Tref, Vth temperature of the electrons and thermal speed of the electrons
0 -1
1 _
ul = ( ) ) u
0 -0
curlu = ( 7517 )u and curlu = ( 8: ) ‘u
Part 11
i iZ=-1

w,n,d,  frequency, angle and wave vector of the incident plane wave
1,7, Ndom subdomain indexes and number of subdomains
k,l, K exterior boundary edges indexes and number of edges

P algorithm iteration index
Q,Q; polygonal domain and subdomains
[,Ty, It boundary of , edges of the boundary and intersections with 9€;
n,t normal and tangential unit vectors on the boundary T’
ng, ty normal and tangential unit vectors on the k" edge of the exterior boundary
n', t’ normal and tangential unit vectors on the boundary 9;
Tk outgoing unit tangential vector at the extremities of the k*" edge
Ay corner at the intersection of edges I'y, and I’y
Ore interior angle at corner Ay, in (—2m,0)

AZ@,C}; an endpoint and the set of endpoints of I} that are corners of T', i.e. non flat corners
B}/, Fi  an endpoint and the set of endpoints of I' that are interior points of I'y, i.e. flat corners

17






Resonant Maxwell’s equations
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1 Introduction to resonant Maxwell’s
equations

This chapter is an overview of the physics at stake and of prior mathematical results and tools. We
start by giving a broad description of the mechanisms involved in a tokamak. We then focus on the
study of waves in plasmas, in particular on the reflection and absorption phenomena, and derive
the system of Maxwell’s equations in the hybrid resonance regime, that we call resonant Maxwell’s
equations. A synthesis of previous and related mathematical work is then presented, pointing out
the difficulties of this system. Finally, the method of manufactured solutions is introduced, and
developed on the simplest configuration of resonant Maxwell’s equations: transverse electric (TE)
waves in a 1D plasma.

1.1 Nuclear fusion and tokamaks

Nuclear fusion is a reaction that binds two light atoms together, releasing energy. To fuse Deuterium
and Tritium nucleides, which is the fuel tested in current projects, extreme conditions of temperature
and pressure are needed. For the ITER [71] project: the temperature must be of the order of 108
degrees Celsius, ten times the temperature in the core of the sun; the density must be greater than
1029 particles per cubic meter. This implies in particular that it is complicated to insert probes
inside the tokamak to make measurements, and that numerical models describing the plasma inside
the machine are needed.

The machine is a toroidal chamber subject to strong magnetic fields! to confine the matter inside.
To do so, as pictured in Figure 1.1, different types of magnetic fields are generated by coils and are
combined to form a helicoidal field that confines the plasma [69]:

e the toroidal coils create a toroidal magnetic field of the order of 10° times the terrestrial magnetic
field,

e the interior poloidal coils create a toroidal current of the order of 10 Ampéres which induces a
poloidal magnetic field,

e the exterior poloidal coils keep the plasma away from the wall to limit the deterioriation of the
materials.

Lwhich is what tokamak stands for in russian: TopommaHana KamMepa ¢ MATHUTHGIMEA KaTyITKAMIT
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Inner Poloidal field coils
(Primary transformer circuit)

Outer Poloidal field coils
(for plasma positioning and shaping)

Poloidal magnetic field

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 1.1 — The confinement of plasma in a tokamak [47].

To ensure the fusion reaction can take place, a certain amount of energy must be supplied, and
in particular in order to heat the plasma to the required temperature. We focus here on the
modelization of ion cyclotron resonance heating (ICRH), where waves of different frequencies are
sent in the plasma by radio frequency antennas in the range of 40 — 55MHz, see Figure 1.2. This is
one of the three different external heat sources in the ITER tokamak, among with electron cyclotron
resonant heating (ECRH), that sends waves of about 170GHz, and neutral beam injection, that
sends a beam of deuterium atoms.

N o
3
8
b
8
[0}
S

Figure 1.2 — A radio frequency antenna in a tokamak [47].

Until now, the total output-input energy ratio has never exceeded 1. The objective of the ITER
international collaboration, involving 35 different nations, is to obtain a ratio of order 10. The
tokamak is currently under construction in Cadarache, in south of France.

These information and more can be found on the websites of the ITER project and of the IRFM
institute [71, 69].
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1.2. Waves in plasmas

1.2 Waves in plasmas

The propagation of electromagnetic waves of given frequency w > 0 in a media characterized by
a permittivity tensor ¢ : Q — C3>*3, which varies in space and depends on w, is described by a
wave equation ;

VAVAE-¢E=0 QCR? (1.2.1)

where the unknown E : R3® — C3 is the amplitude of the harmonic in time electric field
E(x) exp(—iwt). This equation, with a permittivity tensor ¢ corresponding to the hybrid res-
onance regime, is the object of our study.

The permittivity details how the medium responds to electromagnetic perturbations: if the medium
were isotropic, ¢ = eI and the permittivity would be characterized by a scalar function e; if
the medium were homogeneous, £ would have constant coefficients. Under one or both of these
hypotheses, there is now an extensive mathematical theory [90, 65, 14, 2|. In this work, we are
interested by a plasma subject to a constant bulk background magnetic field By. The direction of
By will have an impact on the structure of the tensor €, providing anisotropy. We fix the direction
e. = By/|By| of the spatial basis. In addition, we also assume inhomogeneity in the ,y-plane.

The wave equation (1.2.1) is obtained by combining Maxwell’s equations with the particles’ dynamics,
which are described by the plasma model. The interdependency between the electromagnetic fields
and the plasma particles is schematized in Figure 1.3. We make the hypothesis that the ions, which
have a mass m; > m,, are static. We thus consider the motion of electrons only, and use a fluid
model to describe this motion. We denote u. the speed of electrons. The full system of equations
describing the interaction between the wave and the particles is composed of harmonic in time
Maxwell’s equations

W
VAB+ C—QE = pod, (1.2.2)
iwB-VAE=0,

coupled with a harmonic in time Euler equation with Lorentz force, friction and pressure effects
meNe (—iwue + (e - V)ue) = —qeNe(E 4 u, AB) — meNevu, — Vp, (1.2.3)
through a linear current
J=—¢.N.u.. (1.2.4)

Here, N, is the density of electrons, ¢. the charge of an electron, v is a term of friction between
ions and electrons, and p is the pressure tensor. This system of equations is nonlinear, but as it

is known since the classical work of Stix [106] the study of its linearization up to the 15 order is
already rich, and we will focus on the associated linear system.

The wave equation (1.2.1) is then obtained by linearizing the system of equations and expressing

u. in terms of the electric field E using (1.2.3), and by substituting u. by this expression in the
current (1.2.4).

1.2.1 Cold plasma model

The cold plasma model is obtained when temperature and pressure effects are neglected as well as
the friction between the particles, which is to say p = 0 and v = 0. Linearizing equation (1.2.3)
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EM field
Mazwell source% ¢ \I:orentz force

charge and current particles’ dynamics

plasma model

Figure 1.3 — Self-consistent description of a plasma, to which corresponds the system of equations
(1.2.2)-(1.2.3)-(1.2.4).
around the steady state (E, ]§, u.) = (0,By,0), it reduces at first order to

—iwmeNeue = —¢eNe (E + ue A Byp). (1.2.5)

It is now possible to express the velocity in function of the electric field, and since By = Bye.,

— 1w We 0
q w?—w? w?—w?
u = | % = 0 |E,
Me c c 1
0 0 o
for w. = laelBo - hig constant frequency is called the cyclotron frequency, and corresponds to the

me
frequency of the gyration of the electrons around the magnetic field lines.

Combined to (1.2.2) and (1.2.4), it yields

VAVAE-£E=0 (1.2.6)
with tensor
w? iw?wc
9 1 - wz—sz w(wzp—wzg) 0

w —iw3w ‘ w
= (= c _ 1.2.7
£ (c) sy 1Tee 0 (12.7)

0 0 1- 2

Neg?

Me€Q :
of oscillations of a slightly perturbed electron. Notice that w,, is not a constant frequency, since it
depends on the density of electrons in the plasma N,. We make the assumption that N, is linear in

a privileged direction. Because of the structure

and wy, = This frequency is called the plasma frequency, and corresponds to the frequency

2 8 —iD 0
£= (f) iD S 0 |, (1.2.8)
¢ o 0 P

the permittivity tensor is also referred to as a Stix tensor [106]. In this model, w,,w are considered
as fixed parameters, and w, varies in space.

1.2.2 Dispersion relation

The tool widely used in the plasma community is the derivation of dispersion relations. It consists
of the study of so-called propagation modes, which are non trivial plane waves E(x) = Eexp(ik - x)
solution to (1.2.6). Necessarily, this study is valid for freezed plasma coefficients. Although it does
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1.2. Waves in plasmas

not allow for a global analysis of the problem, the insight it gives at least locally is known to be
valuable [106, 41]. It leads to relations between the wave vector k, the wave frequency w, and
fixed plasma parameters w. and w,. These hypotheses come down to study wave propagation in
homogeneous plasma. Indeed, for the operator M := —k A k A —g, the amplitude vector E verifies

ME = 0 and E # 0, so that necessarily
det M = 0. (1.2.9)

Up to a change of variable, since only e, has been fixed, aligned to Bg, we can consider that the
wave vector k has a component along z and a component along x, but no component along y. For
k = (k;,0,k.), that we write as k = (ksin#, 0, k cos ) = kn, see Figure 1.4. For the cold plasma

Figure 1.4 — Wave vector k € R? of an incident plane wave in the z-z plane.

tensor (1.2.8), and writing A = (£ ), the relation (1.2.9) multiplicated by k™2 reads

cos?0 — \S XiD —sinf cos 8
—\iD 1-M\S 0 =0,
—sinf cos 0 sin?§ — AP

or equivalently
—N*P(S* = D*) + XA ((S* = D?)sin® 0 + SP(1 + cos®0)) — (Ssin® @ + Pcos® ) = 0.  (1.2.10)

Equation 1.2.10 is called the dispersion relation (Section 1.3 in Stix [106]). The discriminant of
this second order polynomial in A is

(8% — D* — SP)?sin* 0 + 4D*P? cos® § > 0,

so that A is either positive, and k € R, or negative, and k € C\R. The wave E is thus propagative, if
k € R3, or evanescent, if not. Indeed, if k € C*\R3, the field has a real exponent in the exponential
part. It can be either exponentially increasing and lead to growing waves, or exponentially decreasing
and lead to evanescent waves, according to the sign of the real part. The first are discarded by
energy considerations when considering a cold homogeneous unbounded plasma. There are two
types of transition between propagative and evanescent waves: cut-offs, where k = 0; resonances,
where k — co.

1.2.3 Hybrid resonance
A necessary condition for resonance to occur is that the 0*" order term in (1.2.10) vanishes. For a

perpendicular propagation to the background magnetic field By, which is expressed by 6 = /2,
this condition comes down to S = 0, which referring to (1.2.7) means that

w? = w? +w?. (1.2.11)
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Chapter 1. Introduction to resonant Maxwell’s equations

This relation is verified at what we call the upper hybrid frequency, denoted w = wyy. Hybrid
because it mixes the plasma and cyclotron frequencies, and upper because there exists another
hybrid frequency called lower wyy, such that wiy < we < wyn.

Electron Plosma Wave,
Warm Plosma Approximotion

Sernsten Mode,

when =muce Bernstein Mode,

when o= mucy+3

i
L

arx
arx Len»nunﬁ:ou /‘ qum\vm:nd Cutot
wpe?+w?d [la—QT-X,Cold Plasma Approximation Teen
i )
UPPERHYBRID =~ DENSITY R=—-(1-e7)

FIG. 1. The square of the index of refraction (nx?)
is plotted against density. The frequency, which is z
fixed, is equal to the hybrid frequency at the value of -t
density indicated. For an inhomogeneous plasma with
linearly increasing density, the abscissa is propor-
tional to distance (¥). Dotted lines represent extrapo-
lations of approximate dispersion relations beyond
their regions of validity. Thus the extrapolated cold-
plasma hybrid resonance (1,2~ =) point is seen to co-
incide with the cut-off (1,*— 0) point for the warm-
plasma-approximation plasma wave. QT-X designates
the quasitransverse extraordinary (electromagnetic)
mode. The parallel wave number, kz, is assumed
small or zero. At the top of the figure the bulge out to
the right corresponds to the maximum of the right-
hand side in Eq. (11) which occurs under the conditions
of Eq. (12).

Figure 6.5. Spatial variation of k2(x) for a tunneling problem with a resonance at x = 0
and a cutoff at x =

Figure 1.5 — Diagrams representing the dispersion relations around resonances from Stix [107] (left)
and Swanson [110] (right) for space varying coefficients.

In Figure 1.5, dispersion relations around the upper hybrid resonance are illustrated by the spatial
behavior of k?(x), when the density N (x) is linear and proportionnal to z. The illustration on the
right, from Swanson (Subsection 6.2.4 in[110]), corresponds to the Budden simplification around the
upper hybrid resonance, where essentially a cut-off and a resonance are present, and k?(z) behaves
as 14+ 1/x. The coefficients T' and R on Figure 1.5 are the transmission and reflection coefficients,
and it appears there is a loss of energy from the wave, illustrated here by the fact R? + T2 < 1.
This problem is usually tackled by adding friction again, as a small regularizing term parametered
by v > 0.

Our objective in this work is to understand the behavior of model (1.2.6) with a coefficient w,, that

varies in a given direction, and is such that the upper hybrid relation (1.2.11) is satisfied at a given
location, in the limit regime v = 0.

1.3 Mathematical tools

In this section, we present the different systems of equations studied in this thesis and corresponding
to different hypotheses on the model. A few properties verified by these equations are then illustrated
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1.3. Mathematical tools

in a simple case in subsection 1.3.2, and one of the main tools that will be used in our approach,
the manufactured solutions method, is introduced in subsection 1.3.3.

1.3.1 The different systems of equations

The system of equations we consider is thus

VAB-¢E = 0 in Q,
B-VAE = 0 in Q, (1.3.1)
—(BAn)An+iEAn = fAn ondQ,

on a bounded domain Q C R3, with a permittivity tensor of the form

alx) id(x) O
ex)=| —ib(x) ax) 0 |, (1.3.2)
0 0 7(x)

and Robin boundary conditions with a A > 0, f : 9Q — C?, and n the outgoing normal to €.

Here a, § and ~ are real valued functions. The following assumption is made to model the hybrid
resonance regime.

Assumption 1.3.1. The extra diagonal coefficients 6,7 € W1°°(Q) are smooth, bounded and
positive §,7 > 0. The diagonal coefficient a € W2>°(Q) is smooth, bounded, and changes sign
continuously over a surface ¥ = {a = 0} inside the domain €.

We will consider the following configurations.

e The tensor is 1D or 2D, g(x) = g(x) or £(x,y), corresponding to homogeneity in the directions
y and z or simply in direction z. A Fourier transform in z is undertaken hence the ansatz of
solutions considered

E(x) = E(z,y) exp(ik,z) and B(x)= B(xz,y)exp(ik.z), (1.3.3)

for E,B : Q — C3. For convenience, the domain  will either denote a subset of R in 1D or a
subset of R? in 2D.

e The incident plane wave Ej,.(x) = Einc exp(ik - x) is called of oblique incidence k = (k,,0, k)
in the general case, or of normal incidence k = (k,,0,0) with respect to the bulk magnetic
field By = Bpe,. The Fourier mode (1.3.3) considered is the one corresponding to the value of
k.

For a Fourier mode k., the curl operator reads

0 —ik. &,
VA = Zkz 0 _a:r )
—d, 9, O

and the complete system (1.3.1) is a priori a linear system of 6 coupled equations with boundary
conditions.

Chapter 2 corresponds to the study of the 1D system in oblique incidence, and Chapter 3 deals
with the 2D in normal incidence.
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Oblique incidence in 1D

In the case of oblique incidence, in 1D, the system of equations is

- ik,By — ab, - E, = 0,
ik.B, — B, + E, — oaBE, = 0,
B! - 9E =0
Y z )
B, + kB, = 0, (1.3.4)
B, — ik.E, + E. 0,
B, - E = 0,
in 2, with boundary conditions
By +iAE.n = fan,
{ B, —iAEyn = —fyn, (1.3.5)

on 0f), where n is the outgoing normal.

Normal incidence in 2D

When k., = 0, the system decouples into two independent systems of size 3. Denoting in this case
E=(E,,E,), B=(B,,By,) and f = (f;, f,), these systems write

curle—(_O;5 f)E =0 in Q,
B,—curlE = 0 in Q, (X-mode)
B, +iAE-nt = f-n' ondQ,
curlB—~FE, = 0 in Q,
B—-curlE, = 0 in €, (O-mode)
—B-nt+i\E, = f., ondQ,

for n the outgoing normal to 92, and n* its rotation of angle 7/2. The definitions of the two
dimensional curl operators are stated in the Symbols appendice. The first system is called the
X-mode, for extraordinary, and contains the resonance phenomenon. The second system is called
the O-mode, for ordinary, and consists in a Helmholtz equation on E,

—AFE, —~vE, =0.

Therefore, when studying hybrid resonances in the normal incidence case, we will always refer to
the X-mode equations.

In the 1D X-mode case, which corresponds to taking 9, = 0, a singular analytic solution was
described by Despreés, Imbert-Gérard and Weder in 2014 [32], as a limit of the solution to regularized
equations. A method to characterize this limit solution in order to do numerical approximations
has later been proposed by Campos Pinto and Després in 2017 [99]. These results are summarized
in the next section.

1.3.2 Singular analytical solutions

The two important information of this section are that for the resonant Maxwell’s equations (1.3.1)
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1.3. Mathematical tools

e there is no unicity of the solution,

e there exist singular solutions in the sense that the components of E are not necessarily in L2,
nor in L!.

We illustrate these properties in the simplest case, the 1D X-mode.

Example 1 (Singular solutions: illustration in the 1D-Xmode). The X-mode equations with Robin
boundary conditions in 1D for Q = (—1,1) are

—aE, —idE, = 0 inQ=(-1,1),
—B, 4+ iE, —aE, = 0 in €, (1.3.6)
B, — E?’! =0 in €,
associated to
B.(£1) FilEy(£1) = f.(£1), (1.3.7)

for A > 0and f:{-1,1} — C. One has the two relations

—i8
E,= —FE, and B.=E),
o
and the main unknown is E,,, which we want to search for in H'(£2). Solving the system of equations
comes down to solving the second order ODE

52
~E) + (a - a> E, =0, (1.3.8)

with mixed boundary conditions at = +1. For the particular values a(xz) = —z and §(z) =
V1 —z/4+ 22, equation (1.3.8) corresponds to the Whittaker equation (Section 13.14 in Olver-
Lozier-Boisvert-Clark with £ = 1 and g = 1/2 [95])

11
—El’/’+<$—4)Ey:0.

The solutions outside of x = 0 are linear combinations of the continuous functions on (—1,0) and
(0,1)

Te¥—1
w:zze ™% and wv:ize— —e/? 4 (ln || +/ dy) ze /2,
1 Y
In addition to the two boundary conditions, the continuity of £, can be imposed at x = 0. However:
e the logarithmic singularity of v’ near x = 0 does not allow to determine the fourth degree of

freedom of the system, and results in lack of unicity,

e a priori, E,(0) # 0, and the component E, is non integrable and behaves as 1/z.

To deal with these flaws, the system (1.3.1) is regularized using a small parameter v € R

VABY /B = 0 in Q,
BY -V AE" 0 in £, (1.3.9)
—(BYAn)An+iAE” An fAn on 09,
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where the tensor is defined in € by

a(x) + 10(x) 0
g’(x) = —i0(x)  alx)+iv 0 . (1.3.10)
0 0 (%) + v

Remark 1.3.2. A physical remark is that, for v > 0, this regularized system is a simplification of
the case where friction between ions and electrons is considered in equation (1.2.3) describing the
electrons dynamics [32, 31].

Remark 1.3.3. A qualitative remark is that, as = is positive and bounded below, it is the
regularization of «, in the two first diagonal coefficients, that is crucial.

The following theorem was proved in 1D in normal incidence, where the system (X-mode) reduces
to (1.3.6), associated to the boundary conditions (1.3.7).

Assumption 1.3.4. Let o € W2>°(Q) be such that a(z) = ro+0(2?) forr € R,, and 6 € W1>(Q)
be positive.

Proposition 1.3.5 (Theorem 1.1., Proposition 5.16. [32]). For any A > 0 and complez-valued
function f, and under Assumptions 1.5.4, the solution (E;’,E;QBZ) to the reqularized problem
converges toward a solution (E}, Ef, BF) to (1.3.6)-(1.3.7) in the sense of distributions when
v — 0F. This limit solution has a singular component E;}F that contains a singular term proportional
to 1/« plus a Dirac mass, that do not lie in L'(Q), and an L*(Q) remainder. The components E;f
and B lie in L*(Q).

Moreover, when v — 0=, (EY, Ey, BY) converges toward a solution (E; , E, ,B;) # (E},Ef, B})
to (1.3.6)-(1.3.7) in the sense of distributions, with the same type of singular behaviour.

This singular behaviour is not an artefact of the model and corresponds to the hybrid resonance,
enabling an energy transfer from the wave to the ions. Indeed, one can compute the energy
dissipation

v nr o V1|2
Im/ﬂv. (B A B?) dx = V[ B [3agq) = 0. (1.3.11)

The limit solution v — 07 is the physical solution, corresponding to vanishing friction, to (1.3.1).
However, since the resonant Maxwell’s equations are ill-posed and admit multiple solutions, their
numerical approximation is classicaly carried on by discretizing for a small regularizing parameter
v > 0 a variational formulation of the well-posed system (1.3.9). The space discretization is
then constrained by the small parameter v in a non trivial way. This is why our objective is to
characterize explicitely the solution at the limit, to let go of the regularization parameter v.

The energy relation (1.3.11) can not be used directly at v = 0 to obtain information about the
singularity, mainly because some terms in the quadratic form on the left hand side do not converge
in L'(2). This is the initial motivation for defining quasi-solutions F* and C" associated to E”
and B, and such that this time, the quadratic form related to the heating

JV(E",BY) = Im/ﬂ((E”—F”)/\W)~V<pdx
+ Im

A ((E” - F).g" - (B"-C")- q”) pdx,

where g” and g are the sources of the quasi-solutions, is composed of terms converging in L (€2),
for any cutoff ¢ around the singularity.
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1.3.3 The manufactured solutions method

We define here a tool for the general system of resonant Maxwell’s equations, illustrated at the end
of this Subsection in the simplest case, the 1D X-mode.

What we call manufactured solutions for (1.3.1)-(1.3.9) are fields F¥ and C” and sources g” and
q”, defined in €, verifying the relations

VACY — §1/Fu —_ gu,
{ O VEE — o (1.3.12)
and such that:
e they are known analytically and have limits as v — 07 trivial to determine, hence (H1)

the name manufactured solutions,
e some products of these functions against the exact solution fields E” and B” admit (H2)
limits in L'(Q) as v — 0.

The first hypothesis is crucial to be able to use these quasi-solutions in a numerical discretization.
The second one permits to write an integral relation at v = 07 expressing the energy transfer at
the resonance.

The divergence of the Poynting vector associated to the difference fields
V.I(E' —F’,B" —C")=ImV - ((E” _F)A (B Cl’))

is expanded using equations (1.3.9) and (1.3.12). One has indeed

V/\(BV_CV)_QV (Eu_Fu) — _gy,
{ (BV _ Cu) — VA (Eu _ FV) _ _qu’ (1'3'13)
so that
V- ((E” _F)A (B 0v))
= VA(E'—F)-(B"—C")— (E' —F") - VA (B" — C)
=B - C">+q"-(B" - C") — (E" —F") . 2” (E" — F¥) + (E' — F") - g".
Since g” = ¢ + vl with ¢ a Hermitian matrix, see (1.3.10), it results
V.1 =1Im (q” . (B"—C¥) + (E — F) -?) +U|BY —FY)2. (1.3.14)

In particular, for any cutoff ¢ around the resonance defined as a non-negative function of C}(2)
that is equal to 1 on X, one has the signed integral relation

Im/ ((EV “FY)A(BY —CY) -V + ((EV “FY) g’ —q’ (B - CV)) (p) dx > 0. (1.3.15)
Q
To precise (H2), what is required is that in L!(Q), the following convergences hold when v — 0T
Ps; Im ((EV “F) A (BY — C”)) —~ PglIm ((E+ “FHA (BT - C+)) ,
Im ((E” “FY)- g”) = Im ((E+ “F). g+) 7 (H2)
Im (q” B = CV)) = Im (q+ (B C+)) :
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Chapter 1. Introduction to resonant Maxwell’s equations

where Py, is a projector along the direction normal to ¥. In this case, the integral relation (1.3.15)
passes to the limit.

In addition to (H1)-(H2), a key idea for the definition of manufactured solutions is to introduce
information about the singularity. We define F¥ and C" to be proportional to the type of
singularity expected for the solution. This introduces an unknown k defined on ¥, corresponding to
the proportionnality coefficient, that characterizes the singularity. For v > 0 and ¢ a cutoff around
the resonance, according to (1.3.14), one has

Im/ (E” —kF") A (BY — kC) - Vi + ((E” “kFY) - kg’ — kq” - (BY — kC”)) (p) dx
=v|(E" - kFV)f”m Q)"
Gathering all these information, we then search to minimize the distance between the solution

(E”,BY) and the manufactured solution (F”, C") using the above relation, looking for solutions to
Euler-Lagrange equations associated to the limit of the quadratic form

JH(E,B, k) = Im/ (B=FFF) A (B - kCH) - Vo
Q
+ (E=1FF) - kg — ka* - (B—KCF)) ) dx,

under the constraint of (E,B) being one of the solutions to the resonant Maxwell’s equations for
v=0.

To conclude this introduction to resonant Maxwell’s equations we develop this method on the 1D
X-mode case.

Example 2 (Manufactured solutions: illustration in the 1D-Xmode). For the system (1.3.6) and
under Assumptions 1.3.4, formally, the singular component of the field is

E, = —MSE
A priori, E, € H'(Q) and B, € L?(Q2) verify
52
_ R’ - — 1
B, + (a a) E, 0 in Q, (1.3.16)
B. - E, — 0

with boundary conditions (1.3.7). However, this system of ODEs is ill-posed. It consists of two first
order equations, and corresponds to 4 degrees of freedom. Yet only two boundary conditions and
one continuity relation at x = 0 are prescribed. As explained in Subsection 1.3.2, we define the
physical solution using a limiting absorption principle as v — 07.

Regularization using viscosity. The regularization of (1.3.16) is

62 . v .
-BY" + (a—&—iu(aer)) E; = 0 in(Q
B - EY = 0 inQ

(1.3.17)

z

We state the limiting absorption result more precisely.
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1.3. Mathematical tools

Proposition 1.3.6 (Proposition 4 in [99]). Let v > 0, A > 0 and f, be a complez-valued function.
There exists a unique solution (E}, BY) € L*(Q)* to (1.3.17)-(1.3.7). Moreover, it verifies for a
constant C' > 0 independent of v

1y |L2(e) + 1BY || L2(0) < C.

Corollary 1.3.7 (Corollary 1 in [99]). Consider the same assumptions as in Proposition 1.8.6. Up
to a subsequence, Ey and BY admit strong limits in L*(2) as v — 07 that we denote E and BF .
They are solution of the following variational formulation of (1.3.16)-(1.3.7)

2
/ (ij/ + (i — a) E;¢> de = 0, WWe H&’O(Q),
Q

(1.3.18)
A(EJ¢’+BJ¢)dx = 0, Vo¢e HL),

where Hj 4() := {v € Hj(Q), v(0) = 0}.

At this point, it is known that the viscosity solution (Ey,BY) converges in L*(2) (up to a
subsequence) towards a solution to the limit problem (1.3.16)-(1.3.7), but unicity of the solution
still has not been obtained. We also note that the singularity will be of type 1/z.

Construction of manufactured solutions. For a family of manufactured solutions, the relation
(1.3.15) holds, and rewrites in 1D X-mode

| (B =52 - )y
(1.3.19)
((E FV)gx (B = Fy)gy — aZ(BY = C)) ) da = 0.

We now define a manufactured solution. A solution is composed of (FY, Fy ) and C?, and source
terms (gy,g,) and g such that

- (a+w)Fy — 0k, = g,
-cv o+ i0FY - (a+ w)F” = g, (1.3.20)
C;/ - FV/ = qlz/a

and such that (H1)-(H2) are verified. We recall that the hypotheses amount to explicit manufactured
solutions for ¥ > 0 and at the limit » = 0T and being able to determine the limit of the integral in
relation (1.3.19). Since EY and BY converge in L*(Q2) up to a subsequence, the singular term is

Im/ — F¥)gZpdx. (1.3.21)

It is cancelled by setting
9z = 0.

We also chose F that mimics the expected singularity

a(z) +iv
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Chapter 1. Introduction to resonant Maxwell’s equations

Hence, the first equation from (1.3.20) imposes F,/(x) = (i6(x))~" in Q. For g¥ to be in L*(), we
set

v — 1 1 2.2 2\ T .
CY(z) = zd(O)T <2 log(r“a* 4+ v*) Zarctan( > )) in Q.
Indeed, one can check that C%'(x) = —id(0)/(rz + iv), and
i6(0)  id(z)

re+iv  ofz)+iv

—C¥'(x) +idFY (x)

; — 1
_ ’(5(0)5(@)“5(@< _ )
re +iv re+iv  olz)+iv
Assumption 1.3.4 ensures this term is in L>°(Q) since
1 1 B |aw — 7z lae — ra| —o()
re+iv  a(r)+iv lo(x) + iv||re +iv| = |a(z)rz] ’
and that 5 5 5 5
’ (0) —d(z)| _ 15(0) — d(=)] o),
ra 4 iv |ra|

for small 2. Therefore gy = —CY' 4+ idFy — (o + iv)F) € L*(Q), independently of v. Lastly,
q¢ = CY — F/ is also in L*(Q).

We have defined an explicit manufactured solution

V) = L
Fl( ) a(f) +’L'I/,
@ = ey
CY(z) = —15(0)% <;10g(r2x2 +v?) — iarctan (7)) ; (1.3.22)
9ele) = 0"5(0) 6 () () +i
y _ 7 w0 _ax +w
91/(-1') o reriyl loz(m) + v i6(x) ’ 5
@ (r) = —ié(O); (2 log(r?z? + v?) — i arctan (?)) + 25((5))2
with corresponding limits as v — 0T
-1
) =
Fz ( ) a(ir)’
F;‘(CE) = ma
Ci(z) = —z‘é(O)% (loglm‘l —igsign(m‘))a (1.3.23)
gz (x) = 9’5 0 s L
s = O v (- o) - 55
i) = ~id(0) (logral - i sin(ro)) +

Exept from FY, all of these functions are in L?(Q2) uniformly with respect to v. The limit (1.3.23)
of system (1.3.22) holds in L?*(Q) as v — 0F for all components but F”. They verify the relations
(1.3.20) as well as (H1) and (H2), and thus form a manufactured solution associated to the resonant
Maxwell’s equations.
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1.3. Mathematical tools

Energy of the scaled difference. Now that such a manufactured solution has been constructed,
with a singularity expected to be proportional to the one of EY at x = 0, we introduce a new
unknown k € C to characterize the singularity. For all k£ € C, one has the dissipation relation on
the scaled difference between the solution and the manufactured solution

Im/ ((E; —kE;)(BY — kCH)Y + ((E; — kF kg — kgt (BF — kcj)) (p) dr > 0. (1.3.24)
Q

We seek to minimize the energy of (1.3.24), in order for kFY to be as close as possible to the
singular part of EY. To do so, we minimize the quadratic form defined on V := L?(Q2) x L*(Q) x C
by

TH(E, B, k) = Im/ ((E “kE)(B - kCT)g + ((E — kF) kg — kgt (B - koj)) ap) da
Q

under the constraint of verifying weakly the resonant Maxwell’s equations
b((E,B),X) =t(A) YAeQ’,
where b is defined according to (1.3.18) on L?(Q2)? x Q° for
Q" :={(v,w) € H'(Q)?,v(0) = 0},
by
52
Q

and ¢ is defined according to the boundary conditions (1.3.7). The associated Lagrangian is defined
on V x Q° by

b(EBLN) = [

Q

LT ((E,B,k),\) =J"(E,B,k) +Im (b((E,B),\) — {(N\)).

The Euler-Lagrange equations, corresponding to d[,zr( EBR)A) = 0, consist in a closed system and
the solution is such that (E, B) verify the resonant Maxwell’s equations.

In the context of this work, the remaining questions are: is this system well-posed, in the sense of
existence and uniqueness of the solution? If so, are the components (E, B) of this solution limits
as v — 07 of (E;’ . By ), the solutions of the regularized Maxwell’s equations? If so, the second
question concerns the meaning behind this minimization principle: it is not straightforward that
the solution is the physical solution we seek for.

The first question will be answered positively for both the 1D problem in mode coupling and the 2D
X-mode. The structure of the Euler-Lagrange equations in each of these cases is the one of mixed
variational fomulations, for which necessary and sufficient conditions are well known [13]. Operator
theory tools such as coercive and compact decompositions and the Fredholm alternative then lead
to well-posedness. A positive answer to the second question was also provided in 1D mode coupling,
by deriving a priori estimates on the solution and a variational formulation for » > 0 that converges
towards the Euler-Lagrange equations, as sketched in the General Introduction in Figure 1. In 2D,
numerical simulations with a straight interface validate this 1D answer.
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2 A stable formulation for 1D oblique
incidence

This work with Martin Campos Pinto and Bruno Després is the subject of an article accepted in the
Journal of Computational and Applied Mathematics, entitled A Stable Formulation of Resonant
Mazwell’s Equations in Cold Plasma.

In the Appendix 2.5, additional computations concerning the second test case that are not in the
published version are added.

We consider a boundary value problem (BVP) for a reduced system of time harmonic Maxwell
equations in magnetized plasma. The dielectric tensor is strongly anisotropic and the system admits
resonant solutions in the context of the limit absorption principle. In particular, in the vanishing
viscosity limit the normal component of the electric field becomes infinite and non integrable at
the resonant point, and the system becomes ill-posed. In this article we recast the problem in the
framework of mixed variational problems and we propose a well-posed formulation that characterizes
the singular limit solutions. A key tool is the method of manufactured solutions [99] to construct
an integral variational characterization of the jump conditions at the resonance. The well posedness
is demonstrated and basic numerical results illustrate the robustness of our approach.

2.1 Introduction

Linear cold plasma models are routinely used to compute the propagation of radio-frequency
electromagnetic (EM) waves in magnetized plasmas, with applications in the ionosphere and in
tokamaks [20, 106, 110, 3]. However, to our knowledge, a sound analysis of the well-posedness of
these models has never been proposed in the context of variational formulations which are the
basis of computational tools in the plasma physics community [87, 85]. The reason is that the
mathematical or physical solutions present White-Chen strong vectorial singularities [114] which
make questionable the accuracy of finite element solvers in this context. In this work we contribute
to establish the first rigorous mathematical and computational treatment for such problems by
constructing an original and stable mixed variational formulation of the equations.

In the cold plasma model problem, the time harmonic Maxwell’s equations are coupled with a
Newton law for the linearized response of the non-homogeneous electron plasma. After elementary
manipulations the electron current density can be eliminated from the equations, and the time-
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Chapter 2. A stable formulation for 1D oblique incidence

harmonic EM field (E¥, B¥) satisfies a system of the form

{ BY — VxE' =0 (2.1.1)

VxB’ - B = 0

Here E” is the unknown electric field. The physical magnetic field is actually %B” with w the
frequency of the wave sent into the plasma, but for convenience we call BY := V A E¥ the magnetic
field. The presence of a bulk magnetic field results in a planar structure for the dielectric tensor. If
the plasma density varies only in the x direction and the bulk magnetic field is aligned with the z
direction, we may consider a simplified tensor of the form

alz) +iv  id(x) 0
g'(x) = —i0(z)  afz)+iv 0 |, x = (z,y,2) (2.1.2)
0 0 1

with o a smooth function vanishing at = 0 and § > 0. The planar configuration is obtained by
considering fields of the form (EV,B¥)(x) = e*:*(E¥, B")(z) which corresponds to waves being
sent into the plasma with a wave vector k = (k, 0, k,), see [114]. Writing E” = (e, e”,e¥)" and

s €y €2
B” = (b}, by, bY)", we rewrite system (2.1.1) as
b tik.er = 0 —ikby —(a+iv)el —idel = 0
by —ik.el el = 0, ik by — by tidel — (a+iv)el = 0 (2.1.3)
b er/ = 0 bZl —e, = 0

and we observe that all the components of the fields can be expressed in terms of e} and by. As v
goes to 0 which is a physical regime encountered in fusion plasma physics, the main singularity
concerns 5 "
v o__ ? v (s v

= a—&—iuby' (2.1.4)
The problem is that the field E¥ becomes non integrable for v = 0. This non integrability
phenomenon is not compatible with the standard finite element treatment of Maxwell’s equations
[90]. Related problems have been studied in the framework of metamaterials [34, 91] where the
permittivity changes sign. Here an additional difficulty comes from the fact that « also vanishes at

x =0.

A convenient approach to have a better understanding of the problem and to propose a solution is
to consider a White-Chen reformulation in planar geometry. We write it as

d2 v 1 v v _ : _ ([
L (w)—i—mN (x)u”(z) =0 in Q=(-1,1), (2.1.5)

where the unknown u” = (ey, bZ)t is made of the second components of the electromagnetic field.
It is completed with natural dissipative boundary conditions

%u”(il) - ( " Z.?O_ >u”(j:1) — £(+1), (2.1.6)

for o > 0 and f a C2-valued field defined on 9Q = {—1,1}.
Here the matrix N¥(z) € M2(C) is also a smooth function of z as

vy = ( FEe(@) +iv) + 0(2)® = (a(z) +iv)? S(x)k-
NY(z) = < 5(x)k. k2 — (a(z) +iv) > forz e, (2.1.7)

z
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2.1. Introduction

which does not vanish at & = 0. Therefore for v = 0 the coefficients of (2.1.5) blow up at this
resonant point and the boundary value problem (BVP) is ill-posed. The limit equation can only be
formulated outside 0

d? 1
T2

N(z)u(z) =0 in Q —{0}. (2.1.8)

However, a preliminary mathematical remark is that the matrix N = N satisfies at the resonance
the important condition rank (N(0)) = 1, so that there exist functions v € H'(Q)? such that TNv
is square integrable on  although v(0) # 0.

The case k, = 0 corresponds to a wave being sent with a normal incidence with respect to the bulk
magnetic field [114]. In this case the equations on e, and by decouple. The wave corresponding to
the latter field is called an ordinary mode (O-mode) and in the limit v — 0 it satisfies a standard
Helmholtz equation. The wave corresponding to the former one is called an extraordinary mode
(X-mode) and is the singular one. In the generic situation considered here of a function « that
vanishes locally at z = 0 the component e} = —iajwez may become non-integrable, and the
problem needs be addressed using a limit absorption principle with vanishing positive viscosity
v — 07. It has been mathematically analyzed in [32]. However it must be noticed that classical
literature [90] does not say anything about this problem, because of the strongly anisotropic nature

of the dielectric tensor which generates these strong singular vectorial solutions.

In this article we develop a mathematical theory that covers the case k, # 0 corresponding to a
wave being sent in the plasma with an oblique incidence with respect to the bulk magnetic field
[114]. We still have the same type of potentially non-integrable field e, see (2.1.4), but this case
is notoriously more complicated to analyze since it brings what is called a mode coupling: as the
extra-diagonal coeflicients are non zero in the matrix (2.1.7), it is no longer possible to decouple
the equations on e; and by. Our goal is thus to characterize and analyze the reduced model (2.1.5)
in the limit » — 07. For that purpose we will use the classical framework [13] for mixed variational
formulations. The most original tool in our approach will be the method of manufactured solutions
recently introduced in [99] which is used to characterize the singular solutions within the mixed
variational framework.

The very singular behavior of the solutions corresponds to an interesting and fundamental resonance
phenomenon that takes place at x = 0. In the context of controlled nuclear fusion this is one of the
methods used to heat the plasma in a tokamak. The resonant heating is tied to the amplitude of
the singularity. Letting IT¥ = Im(E” x B¥) denote an ad-hoc Poynting vector, it can be written as

lim [ V-IIYdz = lim y/ |E”(x))*dz >0 (2.1.9)
Q

v—0t Jo v—0t

where the positivity of the limit is already an indication of its singular nature. We refer to [31, 99]
for additional mathematical results on the X-mode resonance, and to [23] for a numerical study.

Assumptions and notations. Before stating the main results we need to particularize the class
of matrices which is encompassed by our theory. As written above, for v € R the matrix-valued
functions considered here are of the form (2.1.7).

Assumption 2.1.1. We suppose that a € W3°°(Q) is real-valued and such that 0 is its only root,
with 7 = o/(0) # 0. In addition we assume that § € W3°°(Q) is real and positive. Finally the
Fourier variable k., € R is arbitrary, to handle the mode coupling phenomenon described in [114].
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Chapter 2. A stable formulation for 1D oblique incidence

Notation 2.1.2. As N” depends continuously on v, for v = 0 we denote the limit matrix by
N := NO°.

The symmetry properties of (2.1.2) can be characterized as follows.
Proposition 2.1.3. For v € R, N” is such that

N” = (N*)!, N”=N"", and kerN(0) = Spanc{(k.,—6(0))'}.

For v >0, it also verifies the dissipation property

1( LIV N_”):Im( Ly <o, (2.1.10)

2i \o + v o — v o+ v

in the sense that it is negative semi-definite.

Proof. Given (2.1.7), the three first properties are immediate as «, §, k, and v are real-valued and
as «(0) = 0. For the last one we use

1
o+ v

Im(

—q _ 2 2 2
)= (G o o (P )

a? 4 2 T 212 Sk, k2

Because 62|c1 |2 +20k, 163+ k2|ca)? = |5c1 + ko ca|? for ¢, ¢ € C, it establishes Im(N¥ /(a+iv)) < 0.
Finally as NV /(a +iv) = N7¥/(a — iv), the announced property is verified. O

New results. Our main mathematical results can now be formulated as follows.

Theorem 2.1.4. Under the above assumptions, the unique solution u” of system (2.1.5)-(2.1.6)
converges for v — 0% weakly in H*(Q)? towards a function u™. This function is a strong solution
to the limit equation (2.1.8) except at the resonance and satisfies strongly the boundary conditions
(2.1.6).

This first result establishes the existence of a limit for vanishing viscosity parameter v, but the
limit equation (2.1.8) does not allow to completely characterize u™ since the equation is not valid
at x = 0 due to the singularity. The next result establishes that u™ is the solution of a well posed
mixed variational formulation in the spaces

V=H(Q)?xC and Q= {veH (2 NO)v(0)=0}.
Theorem 2.1.5. The viscosity limit u' is the unique solution of a mized variational formulation

Find ((u,s),\) € V x Q such that
{ a* ((u,5), (v,t)) = b((v, ), A) 0, V(v,i) eV, (2.1.11)
b((uv S)v M) = E(,U,), Vp € Q,

where the sesquilinear form b is defined in (2.2.4), the antilinear form ¢ is defined in (2.2.6) and
the sesquilinear form a™ is defined in (2.3.5).

The proof heavily relies on the theory of mixed variational formulation [13]| applied to a convenient
characterization of the limit solution u™, where the sesquilinear form a® appears to be exactly

40



2.2. Preliminary material

what is needed to complement the missing information stressed in Theorem 2.1.4. We will also
propose in the core of this work another mixed variational formulation which is valid for v > 0 and
has the limit (2.1.11) for v = 0.

We will show at the end of this work how to reconstruct all components of the electromagnetic
field from the numerical computation of u. It will illustrate the highly singular nature of the
electromagnetic field and the computational efficiency of this new method. The gain of numerical
accuracy, with respect to a classical finite element formulation, will be illustrated on the numerical
computation of the resonant heating.

Outline of the paper. Preliminary material, such as the sesquilinear form b and simple a priori
bounds, are introduced in Section 2.2. The mixed variational formulation is constructed and studied
in Section 2.3. Since the theory of mixed variational formulation is completed with a well established
theory of numerical discretization, we take this opportunity to illustrate our main results with
simple and reliable numerical results in Section 2.4. It also helps to better understand the physics
which is behind the model problem (2.1.5). An application to an accurate calculation of the resonant
heating is finally shown.

Additional conventions. Vectors will be written in bold lower-case letters as u or A, matrices
will be written in bold upper-case letters as N. The dependency on v will be upper-indexed, as for
N¥. When the limit as v goes to 0 depends on the sign of v, it will be upper-indexed with a plus or
a minus sign, as for ut or a¥. And when the limit does not depend on the way v goes to 0, it will

not be indexed, as for N, to simplify the notations. We will use the notations {f}l_1 = f(1)+ f(-1)
and [ f] 1_1 = f(1) — f(—1) for a scalar function f defined in -1 and 1. When the context makes
it non ambiguous, the norm ||.||1(q)2 will often be denoted by ||.|[ 1) or even simpler by ||.[|z1.

The dual spaces will be noted with a prime, for example @’ is the space of all continuous linear
maps from @ to C.

2.2 Preliminary material

Let us start the construction with two natural variational formulations associated to (2.1.5)-(2.1.6)
and (2.1.6)-(2.1.8). For v > 0, the viscosity problem can be written in H'(£2)? as a first variational
formulation:

Find u € H'(Q)? such that

b (u,v) = ¢¥(v) for all test functions v € H'(Q)2. (2.2.1)

Here the sesquilinear form is

b (u,v) = /Q (u’ ¥ fu- a'f@_yv) do — { ( ig Z.?G )u-v}1_17 (2.2.2)

for (u,v) € HY(Q)? x H'(Q2)?, and the antilinear form is

rv)=[£-9]",, forve HY(Q)? (2.2.3)
In order to pass to the limit » = 0T, in a way or another we must handle the fact that N(0) does
not vanish so that the integral may be ill defined. In this work, we decide to impose a constraint

on the test functions.
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Chapter 2. A stable formulation for 1D oblique incidence

Definition 2.2.1. For v = 0T, we introduce a space of test functions

Q= {veH"(Q)? NO)v()=0}.

The limit of (2.2.2) for v = 07 is naturally written for u € H'(Q)? and v € Q C H'(Q)*

Find u € H'(Q)? such that

b(u,v) ={(v) for all test functions v € Q. (2.2.4)

where the sesquilinear form is

b(u,v) = /Q (u’ ¥ +u- Zv) da — { ( ig i?g >u-v}11, (2.2.5)

for u € H'(Q)?, v € Q, and the antilinear form is the same as (2.2.3)
{=/?¢" on Q (226)
Remark 2.2.2. The fact that (2.2.5) is well defined for u € H'(Q2)? and v € Q is a consequence
of Hardy’s inequality [19]
f*(=)

o 2

dz < 4/ f?(z)dx
Q
for f a real-valued function of H'(Q) vanishing at 0.

It is sufficient to apply this inequality separately to the first and second components of the vector
Nv to show that Nv € L?(Q)%

It is easy to show that solutions u = (e, b)! € H*(2)? to (2.2.4) are in fact strong solutions except
at © = 0 of a system of second-order ODEs. They verify on (—1,0) and on (0,1)

52 ok,
e+ (e Toa)e 0 SEV =0, (2.2.7)
2.2.7
ok, K2
-y 4+ e + <7z — 1)b = 0,
@ o
as well as two boundary conditions on the left at = —1 and two on the right at = 1. Now,

because of the constraint imposed on the test function space Q) it is only possible to show that three
linear combinations of the solutions, namely e, b and k,e’ — §(0)¥, are in H'(£2), which yields three
continuity relations at 0. Thus we see that one constraint is missing to define uniquely a solution
on 2. The problem here is similar to what is known for the X-mode equation corresponding to
k. = 0, as described in the introduction: for v = 0 the system (2.2.7) completed with boundary
conditions admits multiple solutions, see e.g. [32] or Proposition 2.4.1. In order to obtain the
missing information (if there is one), we begin by gathering simple a priori bounds before passing
to the limit.

2.2.1 A priori bounds

A priori bounds are derived in this section for the solution of problem (2.1.5)-(2.1.6) with positive
viscosity v > 0. We remind that here u” = (EZ’ b’;)t consists of the second components of the electric
and magnetic fields in the cold plasma model (2.1.3). As observed before the other components are
easily recovered from these two ones, and we may point out that e = —i 8_ev _jk= pv 5o that

ativ Y a+iv 7Y’
a singularity of order 1/« is expected at the limit.

42



2.2. Preliminary material

Proposition 2.2.3. For v € (0,1], 0 > 0 and f defined on 0Q with values in C?, the weak
formulation (2.2.1) of (2.1.5)-(2.1.6) has a unique solution in H'(Q)?. This solution is denoted u”.

Proof. The right-hand side ¢” is antilinear and continuous. Let us focus on the sesquilinear and
continuous form b”. From Proposition 2.1.3 we see that the real and imaginary parts of % are
Hermitian. It follows that for v = (vy,v2) € H*(Q2)2, the decomposition into real and imaginary
parts of b” (v, v) writes

y . - . N*v B o 0 - 1
b (v,v) = /Q(v v +v oz—l—iy)dx {( 0 i/a)v v}i1

v

"2 _
‘R d
18% HL2—|-/QV e(a—i—iz/)v T

. NY 2 |U2|2 '
+i v - Im ( —)vdz — {ofui [ + — .
Q o+ o 1

Since a,§ € L>®(2) and v > 0, it results that for a non-negative constant Cy > 0,

Nl/
v — "2 . . Vi
Ret'(viv) = VI + [ veRe(ohm)vis (228
> V|72 = Cilv][7-.
One has

N 2\

i vy) = [ v (G was = {ofup+ 20
Q o+ w 7 ) (2.2.9)

1
L 2 2 o, vl
= /QWK(S, ko)t v de — vlor||7. — {O’|1)1| t - N
Consider k, # 0. In this case, one has the inequality
Im by(V,V) S _CQHVH%Q

with a positive constant Co > 0. This way,

Re ((Cg +i(1+ Cl))b”(v,v)) = CoRebd’(v,v)— (14 Cq)Imd” (v,v)
> Co([[V[172 = Cillvll72) + (L + C1)Co V] 2
> Co|lv|F-

So the formulation (2.2.1) is coercive and the Lax-Milgram theorem [Corollary 5.8 in Brezis [19]]
ensures that there exists a unique solution in H'()?, denoted u”.

The second case is k, = 0. The coercivity of Im b” with respect to the second component u5 is lost.
But it is not a problem because the system is decoupled in two scalar equations, as the matrix
(2.1.7) is diagonal. The equation for uY is still coercive, see computations above (2.2.8)-(2.2.9). The
equation for u$ is the classical Helmholtz equation

—us" —uf =0 onQ,
with dissipative boundary conditions, that admits a unique solution. [

Lemma 2.2.4. There exists C > 0 such that for all v € (0,1], [[u”[| 1) < C.
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Chapter 2. A stable formulation for 1D oblique incidence

Proof. The proof is performed in two steps. Firstly we show that the boundary values u”(+1) and
u”’(£1) are bounded uniformly with respect to v. This is the easy step. Secondly we show that
these uniform bounds propagate inside (2.

First step. Taking the imaginary part of (2.2.1) with u =v = u”, it yields

1
v 1 v 7 V|2 1 V|2 - 1
/Qu -Im(OH_Z_VN Ju dx—{o|u1| +;|u2| }_1:Im [f-u }_1,

so that thanks to the dissipation property (2.1.10) and using Im [f - ?]1_ > —2[[f]|u”|] 1_1,

1

1
14 1 14 v 1
{otatiz+ g} —2fe), <o

-1

This second-order polynomial on the four variables |uy(—1)|, |u¥(1)|, |us(—1)| and |u5(1)| has
positive leading coefficients thus it can only be non-positive on a given compact set. And this
compact set depends on the coefficients of the polynomial, which are o and f, but not on v.
Second step. One has

N" ()
a(z) +iv

u”(x)‘ < S w@), x40, (2.2.10)

lu”"(z)| = <
|z|

with C' > 0 a positive constant depending only on «, ¢ and k., so independent of v and z. Introduce
the auxiliary function g

(x) = |f Y@l z [0 (@)] o (-1.0),
g1 = [u’(-1)], -
g(=1) = |u(-1).

We notice that ¢’(—1) and g(—1) are bounded uniformly with respect to v. The functions g, ¢’
and g” are non-negative for —1 <z < 0. One has ¢'(z) = ¢'(=1) + [*, ¢"(y)dy so relation (2.2.10)
ensures

g (x) > [u”’(-1)| + /i [u”"(y)|dy > [u”(z)| in (~1,0). (2.2.12)

Integrating a second time yields

@W=gD+ [ ¢y = W+ [
g g /_19 y)ay /_19 y)ay (2'2.13)

¥ (~1)| + / W)y > @),

v

for z in (—1,0). Use again (2.2.11) to get

z .
g(z) > ‘—Clg”(x) in (—1,0).
This last inequality is used to obtain a bound on g. Indeed (Ing)” = ¢"/g—(g'/9)* < ¢" /g < C/|z|

for z in (—1,0). Since the primitive of 1/x is the logarithm, which is an integrable function, a
double integration on (—1,x) gives a L>°(—1,0) bound on g. Therefore relation (2.2.13) guarantees

[u”(z)] < C in (-1,0), for0<wv <1,
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2.2. Preliminary material

for a positive constant C' > 0 independent of v. And it follows
[u”(z)| < C(1+|In|z|]) in(=1,0), for0<v<1,

for another positive constant C' > 0 independent of v. Therefore u” is in fact bounded in H'(—1,0)2
independently of v. A similar bound uniform with respect to v holds in H'(0,1)2. Finally since
u” € H'(Q) is continuous at z = 0, it establishes

||uy||H1(Q) = HUVHHl(_l,o) + HuyHHl(oJ) <C

for a positive constant independent of v. The proof is ended. O

Corollary 2.2.5. Asv — 07 and up to a subsequence, u” admits a weak limit in H*(2)?, that we
denote ut. This limit is a solution of (2.2.4) for all v € Q.

Throughout the paper, u™ will denote the weak limit of one subsequence of u”. The goal is now to
derive a variational formulation satisfied by u™. We will see that ut is actually the solution of a
well-posed formulation, in the sense that it has a unique solution. Therefore ut will be the weak
limit in H*(2)? of the whole sequence u” as v — 07, and not only of a subsequence.

Remark 2.2.6. Choosing v < 0 and v — 0~ leads to another limit denoted u~. A priori u™ # u~.
The analytical solution (2.4.8) at the end of this paper is an example where indeed u™ # u~.

2.2.2 Manufactured solutions

In this Section we consider the diagonal coefficient of the dielectric tensor has a vanishing second
order derivative at the resonance, that is o’/(0) = 0 and a(z) = rz + O(x3). This is only for the
simplicity of notations, the general situation o(0) # 0 is treated in Remark 2.2.9.

For v > 0 define

- 11— — + -
1) a+iv  rx+iv
wi = , (2.2.14)
ik, ik,

o+  rr+iv

wh = ( 5]?:) ) % (W - z‘ata,n(lx)> . (2.2.15)

These functions intend to approximate the electromagnetic field wi = (e}, by)" and wh ~ (b7, e¥)" =

z) 7z
(er',by")" at the singularity. They are solutions of the non-homogeneous system

1

— VoV v

e N U i Q, (2.2.16)
wh —w{ = z¥,
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Chapter 2. A stable formulation for 1D oblique incidence

with right hand sides

i5. B ié(O) Hkg—(?ﬂ'u) <1_ kg n kz >
— a+ww  rr 4y o+t rr+av 7 (2.2.17)
0
: loo (1222 + 12
(16(0) og(r?z? + v?) —iatan(@)
r 2 v
is' K2 k2
+=|1- — + .
0 a+iv  rr+iv
zh = ik? of r . (2.2.18)
§ \(a+iv)? (rz+iv)?
ik o ik,r ik, log(r?z? +v?) re
— - t _
(a+iv)2  (re+w)?  r ( 2 atan( v )

Proposition 2.2.7. For v € (0,1], the manufactured solution (wY,wY) and the right hand side
(zY,25) are bounded in L?(2)? uniformly with respect to v.

Proof. The non trivial part concerns 1/(a+iv) —1/(rz+iv) and o’ /(a+iv)? —r/(roz +iv)?. First,

1 1 |re — «f

a+iv  rr+iv| \/(arxfy2)2+y2(a+rx)2'

The denominator is equal to va2r2z2 + v4 + 1202 + 121222 so that independently of v,

1 1 -
— — - ey O(1) for small z, (2.2.19)
a+w  rr+aw are
because o = rz + O(x?) thanks to Assumption 2.1.1. So aiw - miiu € L>(Q) with a bound
uniform with respect to v. For the second estimation,
of T _olr?e? — oPr + 2iv(d/re — ar) — V(o — )
(a+iv)?2  (ro+iv)? (o +iv)2(rx +iv)? '
Assuming o = 7z + O(2?) and keeping track of v,
12,2 _ 2 12,2 _ 2 O(va? O(2 22
om‘“x af < jor”a” — a’r| (vz”) (Vx):O(l) for small z and v.
(a+iv)2(re + iv)? (arz)? va(re)?  v3(rz)?

Each term is again in L*(£2), and the dependency on v is cancelled as it is of the same order at
the numerator and denominator of each fraction. O

Remark 2.2.8. According to (2.2.16), we have the sharper bound ||[w¥|z1 < C for a positive
constant C' > 0 independent of v.

Remark 2.2.9. General coefficients are a = rz + pz? + O(23) with p non necessarily zero. A

solution is to replace occurrences of r/(rx +iv)? by (r + 2pz)/(rx + px? + éafa +iv)% in (2.2.18).
Indeed one can check that

/

2
@ — i = O(1) for small x and v.

(a+iv)®  (raz+pa2+ gx:g + )2

The p?z3/r term is here to filter out the non zero root of rz + pz?.
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2.2. Preliminary material

Lemma 2.2.10. As v — 0%, the manufactured functions defined above admit the following limits
in L?(Q)?

— —_ = + =
) T
wi = , (2.2.20)
ik ik
a T
wi = ( 5150) > % (log\rx| — isign(rx)g) , (2.2.21)
i6  i5(0)  k?—a < k2 kg)
e re a rx ’ (2.2.22)
0
i6(0) . v o’ K2 k2 ik? (o r
( " <log|rx|—181gn(rm)§)+5—2 1_E+E 5 \a2 "Gz
+ _
z; =
e ik,r N ik, (10 Ira] — i sign( )ﬂ'>
- — rx| —isign(rz) =
a? (ra)? r gIrel —ioemre/y
(2.2.23)
Proof. This is immediate using Proposition 2.2.7. O

Remark 2.2.11. To characterize u™, we could define a family of manufactured functions for a
negative viscosity by the same formula and have similar v-independent bounds. The limits as
v — 07 of wj and z5 would then be different as atan(rz/v) — sign(—rz)3.

v—0—

2.2.3 An energy relation

As introduced at the beginning of the paper, a key observation is the energy identity (2.1.9). We
make this remark instrumental in our context by considering specific quadratic forms associated to
the Poynting vector of the scaled difference between the electromagnetic field and the corresponding
manufactured solutions. This is performed introducing the set of non negative test-functions that
do not vanish at the singularity location

Co () = {¥ € C(Q), ¥ >0, ¥(0) >0} (2.2.24)
This technical tool is essential in our method.

Definition 2.2.12. For v > 0, ¢ € C} , (Q) and (u,s) € H*(2)? x C, set the quadratic form J"

J"(u,s) = —Im/ (u—swy)- (0 —swh)p'dz
Q (2.2.25)
+Im [ (sz} - (u—sw¥) — sz} - (W — swh))pdz.
Q

Define the limit quadratic form J% on H'(Q)? x C such that J*(u,s) = 1i%1+J”(u, s) for all
v—
(u,s) € H'(Q)? x C.
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Chapter 2. A stable formulation for 1D oblique incidence

We will pass to the limit in J”(u”,s) as v — 07. In this direction it will be imperative in our
analysis to establish that the quantities arising from (2.2.25)

u” -

1,4l v [N v U, 4 [ 2=y v, U vl U vV, U
u”¢, wy-u , W -Wo, W -Zyp, Wy -Z;9, W - Zyp, Wy Zyp,
are bounded in L!(Q) independently of v.

Proposition 2.2.13. Forv > 0, s € C and u” the solution considered in Proposition 2.2.3, the
following identity is verified

1
TV (0", s) = V/Q (my(a, k)b (0 — swi) |2+ [(1L,0)E - (u — sw!)[)pdz > 0. (2.2.26)

Moreover, up to a subsequence,

lirngju(uu’ s) = Jt(ut,s)
T 1(8(0), k=)' - (ut(0) — swi (0))]*(0 (2.2.27)

7] |

Proof. As u" verifies (2.1.5), (w¥, w¥) verifies (2.2.16), it follows

v

—(u”’ — swh)' + o Z_y(u” —swi) = —sz¥,
(0’ — swl) — (0¥ —sw¥) = —szb.

Since ¢ is compactly supported in 2, integrating by parts and elementary manipulations give that
—Im [ (0 —sw}) - (u”’ — swh)'dz
= Imj (u” —swi)e - (u’ — swh)'dz + Im/ (0’ —swi) ¢ (u’ — swh)dx
Q ) ) NG Q
=1 u” — .
m [ (= swi)ee S
—|—Im/ u’ — swi)p - szldx—Im/ u’ — swi) - sz dx

(uw” — sw¥)dx

= Im/ u’ — swy)p aljl:w( — sw¥)dx
—Im/ —8W1 - szY —m'szg)wdm.
Therefore
JV(u",s) = / u” — swi) o J:W(u” — sw¥)pdx
= /( — swY) (aliuw)m‘pdx (2.2.28)
= <a2 3l k)" (0 = swh) [+ [(L0) - (u — swh)[)

The second part of the integral is controlled by v, and therefore converges towards 0. To tackle the
first part with coefficient v/(a? + 1?), observe that there exists a continuous function e defined on
R, and vanishing at 0, such that

Irl/v .
= - —.
/ a2+1/2 |r| el T2 +1 ) v—0t |r]
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2.2. Preliminary material

Since u” is bounded in H'()? uniformly with respect to v, there exists C > 0 independent of v
such that

(1=2z)u” - u+|2)/dx

0
3’ —utp2 v’ —ut|; < Clu” —ut|g..

2

[u”(0) — u™(0)|

IN

Up to a subsequence the right hand side tends to 0, therefore u”(0) — u™(0) as v — 0. The same
reasons imply wY(0) — w; (0) as v — 0.

Consequently J¥(u”, s) converges towards ﬁ|(6(0), k)t (ut(0) — swi(0)) ‘QQO(O), and the result
is proven. O

Lemma 2.2.14. Foru € H'(Q)?, the quadratic forms can be exzpanded as second order polynomials
with respect to s € C. One has

JY(u,s) = fIm/ u-updr
Q. _
+Im (s [ (0 - wy —a-wh)¢' + (- 2] —u' - z5)p)dx) (2.2.29)
—|s)? A w - Im (a n Z_yN”)W(p dx,
and
Jt(u,s) = —Im/ u-updr
Q. _
+Im (s [, (0w —u-wi)g' + (U zf —uz7)p)dz) (2.2.30)
270
+|s]
7]

Proof. Expand expression (2.2.25) with respect to s

J"(u,s) = —Im/u-?godx
Q _
+Ims [, (0 -wy —0-wh)¢' + (U-zf —u' - z5)p)dz

—[sPIm [ (WY w5’ + (a] - WY — 25 - w)p)da.
Q

As in the proof of Proposition 2.2.13, it follows by an integration by parts that

v

Im/ (Wi - why' + (2 - WY — 2z - wh)p)da = / w - Im ( —)wpda, (2.2.31)
Q Q o+

which yields relation (2.2.29). Again, according to the definition of w and w3, when v goes to 0F

/ng . Im (aT_iy)Wwdx = —V/Q (ﬁ“é’ k)t WT|2 + |(1,0)t 'WT|2)SDdI
= 60,k wi ) e(0)
(2.2.32)
as detailed at the end of the proof of Proposition 2.2.13. Finally, see (2.2.20), w; (0) = (ﬁ, 0)! so
(2.2.30) is established. O
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Chapter 2. A stable formulation for 1D oblique incidence

Another integral relation, which will be used in the numerical section, is the following.

Proposition 2.2.15. The limit solution satisfies a second integral relation: for any ¢ € Ca(Q), it
holds

/ (ut-wi —ut - wi)p'ds = / (ut -zt —ut’ z})pda. (2.2.33)
Q Q

Proof. For v > 0, using again (2.2.1) and (2.2.16)

/ (0 Wy —uwh)pds = / () W — "o wh)dz
Q Q

1% Nl/ 1% 1% v 1%
= /(u <‘0.(_a+iywl +2Y) —u”p - wh)dz

- [ (we) —w )

= (Wep-z¥ —u"'p-z5)da.
Q

Now, up to a subsequence, as u” converges towards u™ weakly in H*(£2)? and the manufactured
functions converge in L?({2)2, (2.2.33) is obtained passing to the limit v — 07. O

2.3 A mixed variational formulation for the limit problem

The minimization of the quantity J* on the product space of weak solutions of (2.1.6)-(2.1.8)
and of complex scalars yields a mixed variational formulation in the Hilbert spaces equipped with
natural norms

V =HY Q)% xC, Q= {ve H'(Q)2 N(0)v(0) =0}, (2.3.1)
1(w, 8)llv = l[allzr @)z + sl- Vil = vl @2 o
We extend the form b defined in (2.2.5) from H'(Q)? x Q to V x Q by
YIS LSV O G BT o
b((u,s), A) —/Q(u A +u " )dz {( 0 ijo )u )\}_1, (2.3.2)

for (u,s) € Vand A € @, and recall that ¢ is the antilinear form such that for all A € @Q,

(= [e-N,.

We are able to write the Lagrangian associated to the minimization of JT on the space of weak
solutions of (2.1.6)-(2.1.8).

Definition 2.3.1. For (u,s) € V and X € Q, let L1 be defined as
LY ((u,5),A) =Tt (u,s) +Im (b((u,s), ) — £(X)). (2.3.3)

2.3.1 Euler-Lagrange equations and main Theorem

The Euler-Lagrange equations associated to the extremalization of LT are
{ AT o(V,t) 4 Tmb((v.t),A) = 0, V(v,t) €V,
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2.3. A mixed variational formulation for the limit problem

Let a™ be the sesquilinear form defined by Ima™((u, s), (v,t)) = dj(t o(v,t) for all (u,s),(v,t) €
H.

Lemma 2.3.2. One has for (u,s),(v,t) € H

at((u,s),(v,t)) = -/Q(V u —u-v)'dr

R _ (2.3.5)
+t [ (w3 -u—wi -u)' + (23 -u' —zf -u)p)dx
Q
1m0
7
Proof. Differentiate (2.2.30) to get
AT (vit) = —Im/(u~7/+V~W)¢dﬂc
+ Im s/ (v -wi =v- w3+ (V-2 —v -23)p)da
Q
+Im t/ (0 -wi—u-wi)' + - zf —u zf)p)dx
Q
2 Re(sh) O

7]

Defining a™ the sesquilinear form such that Ima™((u, s), (v,t)) = d](t S)(v, t), it yields (2.3.5). O

Our problem (2.3.4) can be recast as

Find ((u,s),A) € V x @ such that
{ ot ((w, ), (v,1)) + Imb((v,0),A) = 0, Yiv,0) eV, (2.3.6)
Imb((u, s), p) = Iml(p), VueQ.

The interest of this formulation is that it fits into the frame of classical mixed variational
formulations, see [13]. We are now able to state the main result of this paper.

Theorem 2.3.3 (Well-posedness of the limit problem). The variational formulation (2.3.6) is
equivalent to
Find ((u,s),\) € V x Q such that
{ at((u,s),(v,t)) =b((v,t),A) = 0, V(v,t)eV, (2.3.7)
b((ua 8)7”) = E(N)a Vp e Q.

This problem has a unique solution in the space V' x Q. In addition, the first component of the
solution coincides with the function ut introduced in Corollary 2.2.5. This function is the weak
limit of the whole sequence u” in H'(Q)2.

Proof. The equivalence between (2.3.7) and (2.3.6) is immediate since Imb = — Im b and that V and
@ are both complex-valued. The second part, namely the well-posedness, is proven in Subsection
2.3.2. The last part is proven in Subsection 2.3.3, where the expressions of st and A" are also
precised. O
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Chapter 2. A stable formulation for 1D oblique incidence

Remark 2.3.4. One could think of using another sequence of manufactured solutions leading
to another well-posed variational formulation of the same form. Our result shows that the first
component u of the solution will be the same. In particular u does not depend on the choice of
manufactured solution.

2.3.2 Proof of the second part of the Well-posedness Theorem 2.3.3

First of all, note that problem (2.3.7) can be reformulated using the operators A" : V — V’,
B:V — @ and h € @' such that for all (u,s),(v,t) € V and A € Q,

(A+(ua S)a (Vvt))V/7V = a’+((u7 5)7 (Vat))a (B(ua 5)7 A)Q’,Q = b((u7 5)7 >‘)7

(2.3.8)
(s N)qr.@ = £A).
The variational problem (2.3.7) then writes
Find ((u,s),A) € V x Q such that
~BA = 0, mnV, (2.3.9)

s
B(u, s) = h, in@Q.

Set K = ker B. Define A}, : K — K’ as the restriction of AT on K C V with values in K’ > V',
such that for all (u,s), (v,t) € K,

(AL (u,s), (v, t))K’,K = (A% (u,s), (v, t))V/,V' (2.3.10)

An important well-posedness result for complex valued mixed systems we will use is the following,
for which we recall the assumptions:

Assumption 2.3.5. Let V and Q be two Hilbert spaces, and a*(.,.) on V x V, b(.,.) on V x Q
be two continuous sesquilinear forms. We denote by AT and B the linear continuous operators
associated with them. And we set K = ker B.

Theorem 2.3.6 (Theorem 4.2.2 in Boffi-Brezzi-Fortin [13]). Assume that Assumption 2.3.5 holds,
and let Af; . be defined as in (2.3.10). Then, problem

Find ((u,s),A) € V x Q such that

At(u,8) = BIA = K, inV/, (2.3.11)
B(u, s) = h, mQ.

has a unique solution for every (k,h) € V' x Q' if and only if the two following conditions are
satisfied: A}"{K, is an isomorphism from K to K' and Im B = Q'.

The verification of these conditions for our problem is given in three steps. Firstly we characterize
K, then we prove that A; k- is bijective and finally we prove that B is onto. Therefore it proves
the second part of Theorem 2.3.3.

Proposition 2.3.7. There exists v, w € H*(Q)? such that a basis of K is Bx = {(v,0), (w,0), (0,1)}
with v(£1) # 0 and w(£1) # 0. In particular dim(K) = 3.

Proof. Since the bilinear form b defined in (2.3.2) has no dependance with respect to the scalar s,
the space spanned by (0,1) is in K. Let us now consider (u,0) belonging to K C H'(Q)? x C. The
function u is a continuous function, and the continuity in 0 will have its importance in the sequel.
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2.3. A mixed variational formulation for the limit problem

The claim will be proved if and only if we can show that such functions span a vectorial space
of dimension 2. This part of the proof is as follows. For any € € (0,1), one has that u €
H?(—1,—¢)? U H%(¢,1)? and that outside of 0, —u” + Nu = 0. Also, it verifies the boundary
conditions ‘

io

w(£1) F ( ‘ 2,70 )u(il) _ 0.

Define vz, and wy, the solutions to the Cauchy problems associated to that ODE on (—1,0) for the
boundary conditions

(D=0 g (-0
VIL(_l) = (—iO',O)t, WIL(_l) = (0, _i/U)t'

Similarly, define vr and wg the solutions to the Cauchy problems associated to that ODE on (0, 1)
for the boundary conditions

{ VR(l) = (170)t7 and { WR(l) = (0’ 1)ta
viz(1) = (ic,0)", wh(1) = (0,i/0)".

Then u is a complex linear combination of v, and wy, on (—1,0), and of vy and wg on (0, 1).

These solutions to Cauchy problems on the left and right hand sides can all be extended continuously
in 0, reasoning as in the proof of Lemma 2.2.4 for the H'(—1,0)? and H'(0,1)? bounds for u”,
using the ODE on (—1,0) and on (0, 1) respectively.

On the left, it defines an operator ¢z, : ¢ € C? +— u(0~) € C? by solving the Cauchy problem

N

—u’ +—u=0, in (—1,0),
(6%

u(-1) =c,

T B )
u'(-1)= < 0 ifo ) c.
On the right, it defines an operator ¢ : d € C? — u(0%) € C? by solving the Cauchy problem

N
—u”’ + —u= 0, in (0,1),
u(l) =d, (2.3.12)

1o

w(1) = < 0 i?o )d

The condition that u € H'(2)? is now equivalent to the continuity condition u(0~) = u(0%), that is
T(u(—1),u(1)) = 0 where the linear mapping 7 : C* — C? is defined by T'(c,d) = ¢ (c) — ¢r(d).

It is in fact easy to show that the dimension of the range of T is equal to 2: a sufficient and simpler
condition is to show that the dimension of the range of ¢ is also equal to 2, and this is equivalent
to saying that ¢g is one-to-one. The condition ¢r(d) = 0 is equivalent to say that u in (2.3.12) is
such that u(0™) = 0. For € € (0, 1), integrating the equation against @ on (g, 1) yields

1 .
N ic 0 = —
12 s o . / . _
-/E (' +u au)dx ( 0 i/o >d d+u'(e) -ule) =0.
Refer again to the proof of Lemma 2.2.4 to get |u’(e)| < C(1+ |Ine|) = C(1 — Ing). One has
uE) < [ Wldy<C [ (- ly)dy = C=(2 - ne)
0 0
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Chapter 2. A stable formulation for 1D oblique incidence

So one can pass to the limit u'(¢) - u(e) — 0 as € — 0. It yields

1(\ 1+ -N*)d (% 9 q.a=o0
o u u au i 0 i/O’ — Y

which is well-defined thanks to Hardy’s inequality. Taking the imaginary part, it yields d = 0. So
¢R is one-to-one, and bijective. A similar computation establishes ¢, is bijective. So the dimension
of the range of ¢ is equal to 2, and the dimensions of the range and kernel of T" are also equal to 2.

Take (v,0) and (w,0) € K defined such that v(—1) = (1,0)! and w(—1) = (0,1)*. These functions
coincide with vy, and wp respectively on the interval (—1,0), and they span a 2 dimensional
subspace of K. Necessarily ¢r(v(1)) = ¢r(v(—1)) # 0 so v(1) # 0. For the same reason w(1) # 0.
The claim is proved. O

Proposition 2.3.8. A}K, 18 a bijection between K and K'.

Proof. The space K being of finite dimension, it is sufficient to prove A} - is one-to-one. Consider
the basis Bx of K defined in Proposition 3.4.7. The operator A}}K, is associated to a matrix M

& v=v- V) (W -V—w- V)¢ a
M=| J¢V W=—v- W) [W - W—w W)y as
—ay —az 2im I((I))

for a1, as € C two given scalars, see (2.3.5). Let (c1,c2,c3) € C3 be in the kernel of this matrix. In
particular
(c1,c2,—c3)M(cy,c2,¢3)" = 0.

That is
mp(0) _

|cl|21m/ v -V dr + |cz|21m/ w' - W dz — |cs)?
Q Q ||

Remark that for u € K,

N
Im [ v -up/de = —Im [ u-—10(p—p(0))dz
Q Q «

+Im{(ig i?g)uﬂ(p (0 }
= (ol Py + S {lual?) ) 0(0) < 0.

For u = v or u = w, this quantity does not vanish as v(£1) # 0 and w(£1) # 0. Moreover
©(0) > 0. Necessarily, (c1,c2,c3) =0, and A;K, is one-to-one. O

Proposition 2.3.9. B is onto from V to Q’.

Proof. Proving B is onto from Q x {0} C V to @’ is sufficient. In the sequel of the proof there will
be the abuse of notation that B is defined from Q to Q.

For all u, A € @), decompose b((u, 0), A) as the sum of two sesquilinear forms bg(u, A) + b1 (u, A)

with )
_ Y 5 B ic 0 X
bo(u,A)—/Q(u XN +u-N)dz {( 0 ijo >u )\}_1,

b1(u,A) = /Qu- (a — ) Ada.
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2.3. A mixed variational formulation for the limit problem

The sesquilinear form by is coercive, as for all u € @, Reby(u,u) = |jul[3,. So By : u € Q —
()\ — bo(u, /\)) € @’ is positive and bounded below in the sense of [88]. Denote by B the operator
ueQ— (/\ — by (u, /\)) € @'. All bounded sequences (u,)neny C @ admit a subsequence strongly
converging in L?(2)? towards a limit u € Q. Besides, Cauchy-Schwarz and Hardy’s inequalities
imply that

N _
|(Biun Moo — (B, Ngro| = | /Q (W, = W) (- — )X de| < Clluy = wllge |\
Hence B; is compact. Therefore B = By + By is a Fredholm operator of order 0 since it is a
compact perturbation of a positive and bounded below operator By, see Theorem 2.33 in [88]. The

Fredholm’s alternative establishes B is onto provided it is injective. This part is verified as follows.
Take u € ker B. Then

N_ . i 1
(Bu,u)Q,’Q = /Q (J0'[*+u- au)dx — {iofuy|* + E|uQ|2}71 =0.

Once again, taking the imaginary part yields u(+1) = 0 on the boundary of the domain.The

boundary condition u'(+1) = & ( Zg Z.?U > u(£1) yields u/(+1) = 0. This is propagated by the
equation on €, see Proposition 3.4.7, so u = 0. The injectivity of B on @ x {0} is proven and the
proof is ended. O

2.3.3 Proof of the third part of the Well-posedness Theorem 2.3.3

The third part of Theorem 2.3.3 states that u™, the weak H'! limit of u” defined in Corollary 2.2.5,
is the solution to the variational formulation (2.3.7). In order to establish this result we derive a
new variational formulation for v > 0 which tends to the limit problem as v — 0. It will also yield
additional information about the Lagrange multipliers (s*, A™).

For v € R, (u,s),(v,t) € V and XA € H}(Q)?, define the sesquilinear form a” such that
Ima”((u,s), (v,t)) = dT(q 5 (V1) (2.3.13)
by
a’((u,s),(v,t)) = /Q(V~u' —u-V)y'dr
—S/ ((wg V—wi V) + (2 -V —2f -V)gp)dx
+tf T Gl )
—215t/ wh - Im ( N Ywipdz.
We extend trivially the form b defined in (2.2.2) from Hl(Q) x HY(Q)? to V x HY(Q)? by

oY

b ((u,s),A) = /Q (o A +u- aNJr/;V)dm— { ( z’g i?or )u-)\}l_l, (2.3.14)

for (u,s) € V,A € H(2)%. Now that v regularizes the equations, the form b” is defined on all
H'(Q)? without any difficulty.
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Chapter 2. A stable formulation for 1D oblique incidence

Proposition 2.3.10. For any v >0, s € C, v.€ H'(Q)? and p € H*(Q)?, the solution u” of
(2.2.1) satisfies

v ((u”,s),p) =0(p) and a”((u”,s),(v,0)) =b="((v,0),—(u” — sw¥)p). (2.3.15)

Moreover a”((u”, s), (O,t)) =0 for all t € C if and only if
1 5 N R R — y y 1 0\—
V/Q(m(u —swi)p - ( Sk K2 )W1—|—(u —swi)p - ( 0 0 )wl)dx:O. (2.3.16)

Proof. The first relation of (2.3.15) is just a reformulation of (2.2.1), with the extension of b” on
the whole space V. Now for s € C and v € H}(Q)?,

a”((u”,s),(v,0)) = /Q(V'u”'—u”-V’)ap’dx

Nl/
= f/ ((u” - sw’f)g@)/ -Vdz f/(u” —sw¥)p - vdz,
Q Q

o+ v

which is exactly b= ((v,0), —(u” — sw})y): it yields the second relation of (2.3.15).

Finally if for all t € C

a’((u”,s),(0,t)) = —a”((0,t), (u”,s)) =0,
because of (2.3.13) 0,J"(u”, s) = 0. Then (2.3.16) follows from Proposition 2.2.13 and (2.2.26). O

For v > 0, define for all v € H'(()?

oo 1 52 Sk, \ — 1 0\—,

As it appears in (2.3.15)-(2.3.16), the candidates for the Lagrange multipliers are
s =T"(u’p)/T(wiyp) and AY=—(u”— s"w})ep. (2.3.18)

Indeed, by construction, for Q¥ = {v € H'(Q)? I'"(v) = 0}, (u”,s”) € V and \” € Q" are a
solution to the problem

Find (u,s) € V and A € Q" such that
{ a’((u,s), (v,t)) =b=v((v,t),A) = 0, V(v,t) eV, (2.3.19)
bu((u7 5)7 iu’) = éu(lll), V,U/ S Qu.

And (2.3.19) continuously matches (2.3.7) as v — 07 in the sense that

veRY — vEQ, (2.3.20)

v—0t
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2.4. Numerical illustration

that for all (u, s), (v,t) € V,
a’((u,s), (v,t)) — a((u,s),(v,t)), (2.3.21)

v—0+

and that for all (u,s) € V, if u, € Q" is such that p, - ME Q, then
v—0

v (), m) = b((w,9), 1), (2.3.22)

Proposition 2.3.11. The solution to problem (2.3.7) is (u,sT) € V and AT € Q for st =
—i(5(0), k.)" - ut(0) and AT = —(ut — stwi)p.

1
Proof. Let u™ be such that up to a subsequence, u” = ut as v — 07. For s¥ = T'V(u”p)/T" (W} p),

as in (2.2.27),

() - o) (i) T ) SO0 = i (60,5 w 0)0)

e+ Tt (ol TR ) w0 = T,

1
and s — —i(6(0), kz)t -ut(0) in C. Finally, \” 2 A" as v — 0*. Now as (2.3.19) is verified by
all (u”,s”) and A" and because of (2.3.20)-(2.3.21)-(2.3.22), (ut,s*) and A verify the variational
formulation (2.3.7). O

2.4 Numerical illustration

In order to illustrate the qualitative behavior of the solutions and their dependance with respect to
v, we present some numerical results obtained for these variational formulations using Lagrange
finite elements of order 1. We refer to [13] for a description of standard discretization methods for
such mixed variational problems.

Our numerical solutions are obtained through convenient approximations of (2.3.7) and (2.3.19),
which are the new formulations using the manufactured solutions. For the purpose of comparison,
we also present the approximation of the more classical formulation of the initial problem (2.2.1).
It will show the gain of accuracy of our method in the regime of small v.

The particular case k, = 0 is the normal incidence and the general case k, # 0 is the oblique
incidence.

In normal incidence, the system of equations is decoupled. Denote u” = (e”,b”). For b”, it is a
Helmholtz equation. For e”, it writes

2(x
) + (e~ (o) + )’ (@) =0 e 24)

with boundary conditions
e’ (£1) Fioe” (£1) = f(£1). (2.4.2)

In the case where Maxwell’s equations (2.1.3) are decoupled, equation (2.4.1) concerns e/ = e”,

Y
) v v _ v/ : v v v ;
ot €y and b7 = ey’ The equations on ey, ey and b7 are called the X-mode equations, for

v

ey = —1t
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Chapter 2. A stable formulation for 1D oblique incidence

extraordinary mode. The equations that concern e, by and by are called the O-mode equations,
for ordinary mode.

We are also able to compute a numerical value of the resonant heating. This quantity is based on
the divergence of the Poynting vector II” = Im(E” x B¥). As computed in [99], V - II* = v||E¥||3,
so that

1
V- -lYpdz = y/ (0, k) u )+ e+ 0P pda
[ v S Gl 0w P e ors
o uT

We will present in Fig. 2.2 a comparison of the values of the resonant heating for three different
approximation methods.

2.4.1 The Whittaker test case: a reference solution in normal incidence

In this section, we compare different numerical methods on a test case for which we can compute
an exact solution in closed form.

Take the coefficients
a=-z and §=+/1—2a/4+ 22 (2.4.4)

With these coefficients, the limit of equation (2.4.1) as v — 07 is the Whittaker equation with

unknown et )
et (z) + (Z - f)e"'(x) =0 in(~1,0) and (0,1). (2.4.5)

x
General solutions of the Whittaker equation outside = = 0 are linear combinations of the elementary

solutions

wix s ze 2 vz —e¥/? 4 (In|z| +/ < ; dy)me_x/z. (2.4.6)
1

To get a unique solution two additional constraints are missing. This information can be recovered
using the fact the solution we are interested in is the H! weak limit of (2.4.1) as v — 0F. First,
we have the continuity of e™ in 0. Second, we have the integral relation (2.2.33). As for k, = 0,
the second components of wi", wy, z] and zJ are zero, see (2.2.14)-(2.2.15)-(2.2.17)-(2.2.18), we
denote the first components w;, wy, 2 and z; . Relation (2.2.33) then rewrites

/(e+w2+ —etw)p'de = / (eT2f —et'2)pda. (2.4.7)
Q Q

Proposition 2.4.1. The limit solution et of (2.4.1) as v — 0T is such that

+_|aut+cv, =1<x<0
€= agu + cv, 1>2>0 (24.8)
forar, ar and c € C, with the jump condition
imd(0)? v(0)

—a;p = ————— . 2.4.9
=T ) (249

One can check that the limit solution e~ is such that
ap—a; = —(ag —ar). (2.4.10)
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2.4. Numerical illustration

Proof. For some ay, ag, ¢, and cg € C, e = apu+ cpv in (—1,0) and et = agu + cgv in (0,1).
The continuity of et in 0 yields ¢z, = cg. Denote c that coefficient. As for any 1 > ¢ > 0, (2.4.5)
and (2.2.16) yield

[t —utiga = [t - e
+ (e @uf (@) - et @ui () wle),
| et - eunpas = [ et - e ees
— (e (=t (—e) — e (—e)wi (=9)) ¢(-e),

relation (2.4.7) is equivalent to
) € 5
/ (etwi —et'wi)yp'de = / (et2f —et' 2 )pda — [(e+ wi — e+w;)tp} . (2.4.11)
e e —&
+ 4

Both integrals on (—¢,e) vanish as ¢ — 0, since et,w]", 2 € HY(Q), wi, 2z € L*(Q) and
o€ C1(Q):

‘/ etwl —et'wi)y'da
—E&
/
] / (2 = e )pda| < (et |l zelielio + et laallzF sl ) v2e.
—€
(2.4.12)

The scalar difference converges towards 0 as € — 0 because of (2.4.11) and (2.4.12). It also rewrites

/
< (et = lhwd ezl e + el ot o=l llss ) Ve,

(e wf —etui)p]”, = wiE)pE) (et () —e'(—e)) +6+/(—6)/ (wi )’ da

—E&

Both integrals can be bounded again by /¢ up to a multiplicative constant. Since y/eIn(g) — 0
with e, \/eet'(—¢), ew] (—e) and v/(¢) — v/(—e) also vanish in 0. So

N ip(0), _ 5(0)m _
[(e"wi — etw; )‘P} < 5(0) (ar —ar)u'(0) — cv(0)p(0) B 0
and the jump condition is obtained. O

Now that we have (2.4.8)-(2.4.9), the two boundary conditions are sufficient to determine these
three coefficients. The numerical results presented here have been obtained for the parameters

o=1,f(-1)=1, f(1) =2, and p(z) =TT FT1 1 1), (2.4.13)
Note that ¢ € Cj | ().
We observe in Fig. 2.1 that for a coarse grid, the discretization of the limit problem is accurate, and

that for a small v, the discretization of our new formulation of (2.1.5)-(2.1.6) using manufactured
solutions is more satisfying than the one of the classical formulation (2.2.1).
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Figure 2.1 — From left to right, imaginary parts of the first component of the numerical solutions on a
mesh of 40 cells for the FE discretizations of limit problem with manufactured solutions (2.3.7), for the
problem with small v = 107 and manufactured solutions (2.3.19), and for the classical problem with small
v=10"7 (2.2.1). Analytical solution (2.4.8) in solid line, approximations in dashed lines.

In Fig. 2.2, we also consider the oblique case k, = 4, with boundary conditions
f(—1) = (1,3), £(1) = (2, 5)".

The resonant heating (2.4.3) from the approximate solutions can be computed and it is presented
in the right part of Fig. 2.2 for the three different methods in function of the number of cells. The
result is very typical of convergence tables with respect to two small parameters which are v and
h = Nclen in our case. The classical finite element method for the regularized problem (2.2.1) is
very sensitive to small v since the exact solution and the limit problem become singular or ill-posed
at the limit. It explains why a considerable number of cells is necessary to compute the resonant
heating. On the contrary the standard finite element discretization of the limit problem (2.3.7)
captures the correct resonant heating for a very small number of cells. The intermediate formulation
(2.3.19) displays an intermediate behavior, with respect to resonant heating. These results are
a direct consequence that a correct numerical value of the resonant heating is, through formula
(2.4.3), highly dependent on a correct approximation of the solution at the resonant point x = 0. It
is already visible in Fig. 2.1 that the new formulation (2.3.7) is much better for the computation of
the solution at the resonance point x = 0. This result has its own physical interest in the context of
fusion plasmas, but it also illustrates the mathematical interest of having a correct formulation of
the limit problem. Thus, the findings of Fig. 2.1 and 2.2 are twofold. First, our new formulation of
the limit problem without a regularizing parameter is validated on an analytical solution. Second,
our mixed formulation of the regularized problem improves significantly the results compared to
the classical formulation.

2.4.2 Qualitative behavior: a more physical test case

Let us finally consider a configuration for which a very simplified antenna sends a time-harmonic
plane wave into the plasma at x = —1. We restore the physical dimension of all coefficients of the
tensor (2.1.2) by considering

o+ v 70 0
g = —i0 a—+iv 0
0 0 ol
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Figure 2.2 — Mesh with 200 cells. Above: solution for k, = 0. Below: solution for k; = 4. On the left,
figure above: from left to right, real parts of the approximation of fields e and b by the limit problem
(2.3.7) above, modulus of the corresponding fields below. On the left, figure below: same but on the 2D

reconstruction of the solution u?”

in function of the number of cells Nce.

= ue’™*. On the right: discrete heating for the three different methods

We take parameters such that the plasma is propagative on the first sixth part from the left for

half a period, and resonant at x = 0. The parameters are

(6;2:, r< -2 0, .
a@)=| ~Z O —F<e<s 5= | 12004 20 2
,@ o> 1 120, ’
5 =3
The boundary conditions are now
< é 197 )u’(il) T ( o Z./?fz >u(:|:1) -

<7

x
xT

vV A
Wl W= Wi

£(+1).

,y = (6m)%. (2.4.14)

The dispersion relation k2 + k2 = a(—1) characterizes a plane wave propagating on (—1,—2/3),

where the coefficients of the equation are constant. We take k, = k, =

f(—1) = e~ (2ik,, 20)%, £(1) = (0,0)",

and
o1 =k, 00 =a(-1)/k,.
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Chapter 2. A stable formulation for 1D oblique incidence

The cut-off function ¢ is the same as in (2.4.13).

In Fig. 2.3, for normal incidence, approximation of the three fields concerned by the X-mode
solution to the limit problem is plotted, as for u = (e, b)?,
—id
ey =e ef = - ¢ and b =¢'.

The discontinuity of e, in 1/x appears clearly. In Fig. 2.4, for oblique incidence taking k, = %,

1(b.)

. . 8
0.0 0.4 6
03 4
-05

0.2 B

~-10 01
c < o0 = 0

<15 ~ o

2

-2.0 4

-25 -0.3 -6
-3.0 -0.4 -8

Figure 2.3 — From left to right, approximation of the X-mode fields e, ei and b using the discretization
of the limit formulation (2.3.7). Real parts above, imaginary parts below, for a mesh of 200 cells.

the singular field e/, and the two regular fields e; and b/ are plotted, as for u = (e, b)*,

(67

We observe in figure 2.4 that the second component of the wave is propagated almost until = 0,
that its first component behaves as if it was influenced by the singularity in such a way it corresponds
to a reflection of the incident plane wave, that the field e} does present a singularity at x = 0, and
that all fields are absorbed on the right side of the singularity.

2.5 Appendix

In this Appendix, added to the published article, we precise the modifications of the tools developed
previously that need to be made to treat the numerical example from Subsection 2.4.2 as well as
the boundary condition’s sources for a propagative on one side and absorbing on the other side
medium. In this example, for v > 0 the permittivity tensor (2.1.2) is replaced by

o+ v 0 0
gl = —i0  a+iv 0 |, (2.5.1)
0 0 0%

with coefficients such that for v = 0, as illustrated in Fig. 2.5, the domain €2 is split into
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Figure 2.4 — From left to right, 2D reconstruction of the approximation of the fields er, e;' and b'y" using
the discretization of the limit formulation (2.3.7), and using again u?P = ue*=*. Real parts above, modulus

below, for a mesh of 200 cells.

e a propagative region on one side with « =y = ¢ > 0 and § = 0, and a convenient boundary
condition at x = —1,

e a transition region between the propagative and resonant regions, where § increases from 0 to a
positive value,

e a resonant region 2., where o and § verify the same hypotheses as in Assumption 2.1.1,

an absorbing region on the other side of the resonance with a convenient boundary condition at
=1

Figure 2.5 — Propagative-resonant-absorbing coeflicients.

The system of Maxwell’s equations (2.1.1) with tensor (2.5.1) can be recast into a system of two
ODEs of second order

1 0 2, 1 3 oo
_< 0 1/y ) 2V @+ V@) =0 Ve e, (2.5.2)
on the unknown u” = (Ey, By)". The boundary conditions considered are
1 0 d v iUl 0 v .
( 0 1/v ) " (il)jF( 0 /o >“ (£1) = £(£1), (2.5.3)
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Chapter 2. A stable formulation for 1D oblique incidence

for 01,05 > 0 and f a C? valued function.

In what follows, we detail what is changed when considering (2.5.2)-(2.5.3) instead of (2.1.5)-(2.1.6).

2.5.1 Modification of the tools

Variational formulation for v > 0

The weak formulation in H*(2)? of (2.5.2)-(2.5.3) reads as in Section 2.2

Find u € H'(Q)? such that

b (u,v) = ¢“(v) for all test functions v € H*(Q)2. (2.5.4)

The linear form is the same £* as (2.2.3), but the sesquilinear form is defined for (u,v) € H'(2)? x
H'(Q)? by

o= [ (3 ) e (5 L)oo

On Q,es, the results of Proposition 2.2.3 and Lemma 2.2.4 apply to our new system: it is well posed,

and its solution converges as ¥ — 0T up to a subsequence in L?()2.

Proposition 2.5.1. For v € (0,1], 1,09 > 0, and £ defined on {x;, .} = 00yes with values in C,
the weak formulation

’ 1 O — . NV o _ Z'O_l O - 1:,,,_ .71;7' ) ,
/Q<“ (0 1/v)v+“ oH—iuv)dx {( 0 Z-/@)u V}zl‘[f VI WY € HY (D),

of (2.5.2) on Qes with Robin boundary conditions

(o )@= (T i, )we =t

has a unique solution in H'(Qyes)?, that we denote u”. Also, there exists C > 0 independent of v
such that ||u” || g1 (q,.) < C.

res

Proof. The proofs of Proposition 2.2.3 and Lemma 2.2.4 still apply. O

Outside of Qys, in the zone where @« = v = ¢ > 0 and § > 0 is bounded, and in the zone where
«,d and vy are respectively a negative and two positive constants, the problem is well posed for all
v > 0 for mixed boundary conditions of type (2.5.3). It follows from a continuity argument that

(2.5.4) is well posed, and that its solution converges as v — 0T up to a subsequence in L?()2.

Manufactured solutions

In this configuration, manufactured functions w}, w5 must be solutions of the non-homogeneous
system

1
—wh' + i N*w{ = zY,
a+i .
. 10 o in Qpes. (2.5.5)
W2 0 1/v 1 Z3,



2.5. Appendix
According to the computations from Subsection 2.2.2; we define the functions
(1= — + -
1) a+iv  rx+iv
wi = , (2.5.6)
ik, ik,
a+iv  re4iv
o 6(0) \ i (log(r?z? +v?) re
wh = < . ) . ( 5 i atan( > ). (2.5.7)
and the right hand sides
ié' B ié(()). +ik§_ (?+i1/) <1 kf' N k2 _ )
2l = a+w  Tr+w a+w  rr+w (2.5.8)
0
(ié(O) log(r?z® +v%) iatan(@)
r 2 v
is' k2 2
+—=(1- — + -
5?2 a+iv  rr+iv
zh = ik? of r (2.5.9)
0 \(a+iv)? (rz+iv)?
1 ikzq’ 3 Z'kz’f” ik, (log(r’a®+v?) iatan(g)
vy \(a+iw)? (rz+iv)? r 2 v

The difference with (2.2.14)-(2.2.15)-(2.2.17)-(2.2.18) is the coefficient 1/v that appears in the

second component of z5, and so Proposition 2.2.7 still holds.

Proposition 2.5.2. For 1 > v > 0, the manufactured solution (w¥,w5) and right hand side
(zY,25) are bounded in L*(Qes)? uniformly with respect to v. The L? limits as v — 0% of these

functions are

TN
) o ra

wi = ,
ik, ik,
a Tz
5(0) \ ¢ . 71'
+ Z _ _
w, = ( . ) . (10g|7“x| 251gn(7“x)2>,
i0i6(0) _H,kf—oz (1_1413+sz>
+_ | «@ ry ] o rx
z] = 7
0
i5(0) - my Qe K2Ok2\ ik (o
( " <log|r;v|—281gn(m:)§) +5—2 1_E+% vl vl
+_
o 1 (ik,a/ ik ik
ik,o!  ikyr ik, 7
- ( 5 (mc)2) + e (log|ra:| - Zblgn(rm)g)

Y
Proof. The proof of Proposition 2.2.7 applies.
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Chapter 2. A stable formulation for 1D oblique incidence

The energy relation

The equivalent to the quadratic form (2.2.25) is

1 0
JY(u,s) := —Im u—sw?) - uw — sw¥ |/ dx
(. 9) szm( ) <(0 1/7) 2>S0

Hm/m( (50 () 197>u/_swg))¢dx.

We prove that Proposition 2.2.13 on the energetic relation still holds, and that the leading coefficient
from Lemma 2.2.14 remains unchanged.

Proposition 2.5.3. Let ¢ € C&7+(Qres). Forv >0, 01,09 >0 and f defined on 0Qes with values
in C, one has

1. for s € C and u” the H'(Qyes)? weak solution of (2.5.2)-(2.5.3) on Qyes, it holds
1

JY(u",s) = V/g (m\(a, k) (07— swh) P+ [(1,0)F - (w — swh)[*)pd >0,

2. foru € HY(Qes)? and s € C, the quadratic form J"(u,s) can be expanded as a second order
polynomial with respect to s with leading coefficient

v

- w{ - Im( ywhpdz.

Qros o+ w

Proof. Using the definition of J” and integrating by parts yields

JV(u",s) :—Im/ (u” —swl)ap) (( é 1?7 )u”’—sw%)dx
+Im/ (u” — swi)"- (( é 1?7 )u”’—sw%)gpdx
+Im/ <5z1 (u — sw¥) — ( (1) 3 )zg << (1) 1(/)7 )u"’sw’2’>> pdx.

Now using the definition of u” and relation (2.5.5) verified by the manufactured solution, it gives

o+ v
N 10 \o——+ v o —
+Im —swy) - 0 1/y (uw — sw¥) — (u” — swi) - sz§ | pdz

(e - )4 o )
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JY(u”,s) = Im/ —swi)p- ——(u” —swi)dz +Im | sz - (u”’ —sw)pdz
res Q




2.5. Appendix

Because of the imaginary parts, we can rewrite

NY —
J"(u”,s) = _/ (u” —swy) - Im —(u” — swy)pdz
Qrea

o+

fIm/ (u” — swY) - sz5pdx

fIm/ ( >z5 <( (1) 197 )u’”swg)godz,

and ultimately, using the second equation from (2.5.5), one has

Nl/

P (u” — sw¥)pdz.

JY(u",s) = f/ (u” —swy) - Im
Q

res

Using the expression of Im a'j_y from the proof of Proposition 2.1.3, it establishes the first claim.
(2%

When expanding J"(u, s) in a second order polynomial in s, the lead coefficient is

C:—Im/ (wl wzga—i—(zl w1—<(1) S)zg-wg)go)dx.

Integrating by parts as a first step and then using (2.5.5) as a second step yields

_Im/ ( (WY o)’ w2+w;'.wg<p—<z;.w;_<(1) S)zg.wg)go>dx
) N
/MW1I iy Wi dz,

and the second claim is proven. O

These results then lead to the limit ¥ = 01 mixed variational formulation of same strucure as
(2.3.7), on the same Hilbert spaces, with the difference that

e [ (e (50 )X SR (7 i/ng)u.A}ll,
and

e (3w (b))
/,es<<WZ’+ v Wf'( >V'> 90’+(ZJ-V’—z1*-v)<p> da
/,GS<(W2+ “‘Wf'( )u'>w’+(z§-u’—zf-u>w)dx

mp(0)

7]

1 0
0 1/y
1 0
0 1/

+2 ist.

This is the modified mixed formulation discretized in Subsection 2.4.2.
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Chapter 2. A stable formulation for 1D oblique incidence

2.5.2 Propagative boundary conditions

We start by studying the local dispersion relations for v = 0 around x = —1 to identify the
propagative modes E(x) = Eexp(ik - x) with k = (k,,0, k.) € R?, as in Subsection 1.2.2. Then we
derive a propagative source f(—1) related to one of these modes for the boundary conditions (2.5.3)
with £(1) = 0 for the absorbing condition.

The permittivity tensor is assumed diagonal with a coefficient ¢ > 0 in the propagative region.
The dispersion relation is thus k2 + k? = ¢. Furthermore, as VAV AE — cE = 0, one has
the polarization relation on E ik, E, +ik,E, = 0. It results from Gauss’s law in vacuum that
E € spanc{(0,1,0)", (—k-,0, k,)'}. The boundary condition at z = —1 must let a given propagative
wave go in and out of the domain. Since the second line of (2.5.3) in z = —1 is also equal to

E.(-1) 4 (k. Eo(—1) — EL(~1)),

g2

for a given k, > 0, define

f(—1) := —i « - 1, - 2.5.1
( ) eXp( ka) Ez_isz.z‘FikLEz ( o 0)
g9 g9
where o1 and o9 verify
0 = =tk By +io1Ey,
. 1 A 1 A
0 = E,— —k,E,— —k,E..
g9 g9

Using the polarization relation on E, this last system is equivalent to o1 = k, and o9 = ¢/k,.
Propagative sources at x = —1 are now well defined in association to each propagative mode.
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3 From 2D resonances to a degenerate elliptic
equation

This work with Martin Campos Pinto, Patrick Ciarlet and Bruno Després is the subject of a
submitted article, entitled A variational formulation for coupled degenerate elliptic equations with
different signs.

We study a coupling of two degenerate elliptic equations in 2D with a smooth sign changing
coefficient and compact terms. The degeneracy of the coefficient is critical with respect to the
theory of weighted Sobolev spaces. An adapted functional framework is proposed for the description
of the solution in the context of the limiting absorption principle. It leads to a new well-posed
mixed variational formulation. Numerical experiments illustrate the stability of our formulation.

3.1 Introduction

The model problem for the coupling of degenerate elliptic equations that we consider is written as

—div(aVu)—u = 0 in{,
{ adpu+id = f onl, (3.1.1)
where A > 0 is a positive scalar and f € L?(T) is complex valued. The degeneracy is due to the
fact that a € C%() changes sign inside the domain Q2 C R2, I = 952, typically over a closed curve
denoted as 3.

This problem is motivated by the modelling of resonant waves in plasmas, see Section 3.2, but is
not covered by the theory so far. We will typically be interested in a coefficient « that behaves as a
signed distance to 3.

However the study of degenerate elliptic equations, as in [49, 38], is usually undertaken for
degeneracies that are locally integrable as well as their inverse. But this is the case only for (distx)?
for -1 < 8 < 11in 2D, see [113].

A similar equation arises from the study of the interface between a non-dissipative dielectric, where
the permittivity is positive, and a metamaterial, where it is negative. But the permittivity is
constant on each side and does not vanish at the interface. It is shown in [37, 34, 33] that the
Fredholm well-posedness of the problem depends on the contrast between the two permittivities
and on the geometry of the interface. This metamaterial problem was also studied under a limiting
absorption principle point of view in combination with Agmon-Douglis-Niremberg elliptic a priori
estimates in [91].
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Chapter 3. From 2D resonances to a degenerate elliptic equation

As in [99, 93], we thus resort to a limiting absorption principle to select the correct solution u of
(3.1.1) via the regularized system

{ —div (o + i) Vu¥) — u” 0 inf, (3.1.2)

(a +iv)Opu” +idu”? = f onl.

Since (3.1.2) is well-posed according to the Lax-Milgram theorem, the whole point is to find a way
to pass to the limit as v — 0.

In this work, we propose an original variational formulation for the limit problem v = 0. The
mathematical idea is to use a domain decomposition approach, decoupling (3.1.1) or (3.1.2) into
two similar equations written respectively in subdomains ; = {x € Q, a(x) > 0} and Qs = {x €
2, a(x) < 0}. The main difficulty consists in finding transmission conditions on ¥ = {x € Q, a(x) =
0}: indeed, the degeneracy of the equation is such that one can not rely on H'(Q2) or H2(Q) elliptic
regularity.

Our method is based on a new characterization of the singular behaviour on ¥ of the solution, with
the design of complex logarithmic quasi-solutions. Before stating the main results of this work,
we develop the type of singular solution on a simple explicit solution in dimension one. We will
see that although this generic singular solution has no Dirichlet trace at the singular locus ¥, it
remains possible to define a Neumann type trace for the flux at ¥. One of the issues of this paper
is to incorporate this unidimensional information in a multidimensional formulation of problem
(3.1.1) in the frame of the limiting absorption principle.

3.1.1 An explicit singular solution in 1D

In 1D, for a(z) = x, problem (3.1.1) writes
—(zu/(2)) —u(z) =0, Vzel, (3.1.3)

for an open interval I such that 0 € I and some boundary conditions. We first describe the
analytical solutions to (3.1.3), and then introduce convenient weighted functional spaces.

One can check that v : @ — u(2?/2) verifies the Bessel equation of order 0. Solutions of (3.1.3) are
thus spanned on each component Iy = I N {z > 0} and I = I N {z < 0} by Jo(2,/7) and Y5(2,/7),

where
' (_1)k- 22 k
JO :2z€Cr ZW Z ,
k>0
(—1)k+1H, (z2 > k

(kD2 \4

" 2 z
Yo:z€C == (log§+7)Jo(z)+Z 1

k>1

are the Bessel functions of order 0, with  the Euler constant and Hy the harmonic sum of order k,
see [95] for more details on these special functions. Since Yy has a logarithmic singularity, so does a
generic solution u. This singularity implies that the continuity relations between the I3 component
and the Is component, if they exist, are non trivial: a logarithm has no Dirichlet nor Neumann
trace at 0. Nevertheless, a solution u to (3.1.3) is such that zu’(x) is continuous and has a trace at
0.

We next introduce the spaces Hll/Z(I]-) = {v € L*(I;), flj |z|[v'(x)|*dz < oo} for j = 1, 2, which
come naturally when integrating (3.1.3) by parts. A function u; € H 11 /2(1 ;) that verifies weakly
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3.1. Introduction

equation (3.1.3) on Ij is such that zu; € H'(I;), therefore

2 ()] p=0 = lime ™! /I wuy(z)da.

0 in{lal<e}
Since \/Eu; € L*(I i), & Cauchy-Schwarz inequality and the dominated convergence theorem lead to

1/2
1

€

1 2
‘xu}(x)‘ dx < ﬁ / 2] |u;($)| dz o 0-

Iin{lz|<e} Iin{|z|<e}

Hence such a function u; verifies zu(z)|.=0 = 0. Of course Jo|z, € Hll/2 (I;), but on the contrary
Yo ¢ Hy /2(1;). In fact, in terms of the scale of weighted Sobolev spaces

@uwz%eﬁuxﬁm%wmﬂm<m}

with s > 0, one can check that log| - | belongs to H11/2+E(I) but not to H11/2(I). This implies
e>0

among other things that the generic solution u does not belong to these spaces, that is u|;, ¢ H h /2(1 )
for j =1, 2. It is therefore natural to introduce the scalar g at = 0 defined by

9= 2 (@)]oo.

Lifting g as wy in I;UIy, in such a way that w, is defined on the domain I and verifies zw; ()|.=0 = g,
one is able to decompose the solution u to (3.1.3) on I in regular and singular parts: one writes
u|r; = u; +wy on each I;. The regular part is u; € Hll/z(lj), and the singular part is wy, which
contains a logarithm and is not in H] /2 (I;). At the ODE level, one can also remark that for a
solution such that u|r, = a;Jo(2,/7) +b;Y0(2,/7) for j =1, 2, it holds

b ,
56, where ¢ = 2Y;(2)|z=0-
The solution depends on the four parameters a1, b1, as and by. The boundary conditions and
the continuity of the flux zu/(z) at 0 prescribe three degrees of freedom, and the last one will be
characterized by the value of the singular coefficient g. When dealing with related resonant wave
propagation problems, we note that this coefficient can be determined by the boundary conditions
following a limiting absorption principle as in [99, 93].

b
2u' (2)|pmor = 516 and  2u'(z)]p—0- =

In 2D, a(~, o) is proportional to the signed distance ¢ to ¥. From the above 1D study, we expect
a logarithmic growth in the normal direction to the resonant curve. As a consequence, we will
consider the ansatz of solutions that are combinations of piecewise H; /Q(Qj)-smooth functions for

j = 1,2, and of singularities of the type log|o|, that do not belong to Hll/Q(Qj). We recall that for
a given bounded open set with Lipschitz boundary w C R?, H. 11 /2 (w) is the weighted Sobolev space
of functions v € L?(w) such that /distg, Vv € L?(w)?.

3.1.2 Outline and main results

We start by introducing some preliminary material in the spirit of Subsection 3.1.1. In Section 3.2
we detail the link between the cold plasma model and the PDE (3.1.1). Our main results rely on
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Chapter 3. From 2D resonances to a degenerate elliptic equation

two main ideas. The first one is a specific decomposition of the unknown u into a regular part and
a singular part, which is detailed in Section 3.3. The second one is a characterization of the singular
part following a limiting absorption principle, described in Section 3.4. The singular part w;' is
characterized by the singular coefficient g, which is defined along Y. The regular part is denoted as
u = (u1, ug) and is defined by local problems on the subdomains 27 and €9 that involve the singular
coefficient g. We introduce an auxiliary variable h in the same space as g and a Lagrange multiplier
A in the same space as u. These functions are such that (u,g,h) € V = Q x H*(X) x H?(X)
and A € Q = Hj /2(91) x H} /2(92). The validity of the decomposition of the solution relies on a
technical lemma.

Lemma 3.1.1. Let w C R? be a bounded open set with Lipschitz boundary. The weighted Sobolev
space Hll/Q(w) is compactly embedded into L*(w).

Using a family of explicit quasi-solutions for the regularized problem (3.1.2), we implement the
limiting absorption principle in sections 3.3 and 3.4. This allows us to formulate and prove the
following result.

Theorem 3.1.2. The formal limit v = 0T of problem (3.1.2) admits a regularized mized variational
formulation

Find (u,g,h) € V and X € Q such that
{ af (g, h), (v, D)) = bF((v.kD),A) = 0,  V(v.kD)eV, (3.1.4)
bt ((u,g,h), 1) = Up), V€ Q,

for b and a} defined in (3.4.5) and (3.4.8) respectively. Moreover, this formulation is well-posed,
in the sense that for all f € L*(T'), there erists a unique solution (u,g,h) € V and X\ € Q, which
depends continuously on || f| r2(r)-

In Section 3.5, formulation (3.1.4) is discretized using a classical finite element method. It leads to a
new numerical approximation method for (3.1.1). The numerical results illustrate on the one hand
the robustness of the discretized formulation, and on the other hand the accuracy of the discrete
solution. Of particular importance for the numerical experiments, we verify that the regularization
parameter can take abritrary small values, and can even be taken equal to zero.

3.1.3 Geometry and notation

We use a standard parametrization of the geometry, see [39]. The coefficient « is assumed to be
smooth with enough derivatives, typically C?, and non degenerate in the sense that Va(x) # 0
in the domain of interest. Under these conditions, we define the curve ¥ := {x € R? a(x) = 0},
and to further simplify, we assume that 3 is a closed simple line. We consider the parametrization
f:]0,1] — R? of X illustrated in Fig. 3.1, with £(0) = f(1) and f bijective between [0,1) and .
We assume 7 is a curvilinear abscissa, that is |[f'(7)| = 1. The curvature radius of ¥ at f(v) is
denoted R(7), and we note the minimal value of the curvature radius R, := min, R(v) > 0. This
quantity is well-defined for a continuous R. For a given « € [0, 1], the ingoing normal and tangent
vectors to X at f(y) are denoted respectively n(vy) and t(y). For all v € [0,1] and ¢ € R, we set
¥(vy,0) := £() + on(v) which belongs to a neighbourhood of ¥ for small values of o. It is known
that ¢ is injective on [0,1) X (=R, R.). We next define the tubular extension of X

Seub =1 ([0,1) x (=3 R, 3R.)) N Q.
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3.1. Introduction

Figure 3.1 — ¥ parametrization

transformation

It is convenient to consider the change of variable x = ¢(, o) for x € X¢,p. The Jacobian of the

pa(y,0) :=det Vi) = ['(v)
is such that for O C Xiup

o o 1
- =1—-=—2> = 3.1.5
RG) TR 2 (3:19)
/U(X)dX = / vo1(y,0)paly,o)dody.
o $p=1(0)
We will always use the notation V = (9, 8y)t, and one has
t(v(x))
Vy(x) = and Vo(x) =n(y(x)). (3.1.6)
1 —o(x)/R(v(x))
For any function v we make the abuse of notation v o ¥ (v,0) = v(y,0)
Oya(7,0) # 0, and we have the local expansion for small o

So we define 7(7v)
a(y,0) = r(v)o +0(c?),

with 7 of constant sign. We suppose without loss of generality that r < 0, therefore on a given
particular,

(3.1.7)
3 € Zeub, one has 0 < ¢, < =0, < c*. In the sequel, we will consider the case Q0 = X ;. In

0 < ¢ §—@ <c*, YiY(v,0) €N (3.1.8)
We also define
Q1 =9 ([0,1) X (—3R,,0))NQ and Oy :=1 ([0,1) x (0,3R,)) N,
such that Q = Q; U X Uy, and the exterior boundaries

Fl = an NI and FQ = 892 n F,
weighted norm on ¥ such that

where I' = 9 = I'; UT3. One has Q; = {a > 0} and Q2 = {a < 0}. Finally, we define the L2,

1
Jol12s sy = / 10(3,0)|
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Chapter 3. From 2D resonances to a degenerate elliptic equation

3.1.4 Functional setting

The unknowns are complex valued, and so are the considered functional spaces. We use the
a-weighted Sobolev spaces defined on €, j =1, 2 as

HY5() = {u € L), [ JaGol|Vux)Pdx < oo}

Q;

endowed with the a-weighted norm

1/2
il 0, = (Nl + I1VIalVula,)

This norm is equivalent to the standard weighted H} /2 horm involving the distance to a boundary

[70] according to (3.1.8). The dual spaces, in the sense of the spaces of anti-linear maps into C, are
noted with a prime.

We recall the definition of T-coercivity as introduced in [37] which is an explicit realization of the
inf-sup condition.

Definition 3.1.3. Let H be a Hilbert space. Let T : H — H be a continuous linear operator. A
bilinear form b defined on H x H is T-coercive if there exists C' > 0 such that |b(u, Tu)| > C|lul|%.

If T is a bijection, for all continuous linear forms ¢ defined on H, there exists a unique u € H
such that b(u,v) = £(v) for all v € H. And as it is the case for coercive forms, up to a compact
perturbation, b is associated to a Fredholm operator of index 0. This last property implies that the
associated variational formulation admits a unique solution if and only if uniqueness holds. This
result will be used further.

For any z,y € R, we note the complex logarithm log(z + iy) := % log(2? + y?) — i atan(z/y).

3.2 Modeling of plasma resonances

Our interest for equation (3.1.1) originated in the study of X-mode solutions of the time harmonic
resonant Maxwell’s equations in 2D. Resonant Maxwell’s equations are used to model plasma heating
in a tokamak [108, 87]. The X-mode consists of the transverse electric (TE) mode (E1, E2,0). See
[32, 99] for the X-mode study in 1D, and [93] for the full (E}, Fs, E3) case in 1D. For E = (Ey, E»),
the system of PDEs is

{ curlB—-c¢E = 0, (3.2.1)

B—culE = 0.

The permittivity tensor for the resonant Maxwell equations writes

_ o i
E7\ -5«

where the coefficients depend on x through plasma parameters, and on the constant frequency
w > 0 of the wave sent in the plasma. Precisely,

o= (3 1= ) x-S en
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3.3. Limit viscosity v — 0" solution

Here w),, is the plasma frequency. It varies in space and corresponds to the frequency of oscillations
of slightly perturbed electrons as they return to equilibrium. And w, is the cyclotron frequency, the
frequency to which electrons gyrate around the magnetic field. We are interested in the lower hybrid
resonance, localized at ¥ = {x € R?,w? = w2(x) + w?} = {x € R? a(x) = 0}. We concentrate on a
connected component of ¥, which we assume to be a closed curve that separates the domain €2
in two. On X, the off-diagonal coefficient is § = “z= > 0. We thus consider ¢ to be positive and
bounded below by a non-zero constant.

The solution of problem (3.2.1) is expected to have a singularity of order 1/« on X: this singularity
does not belong to L%(€2), nor to L'(£2). Conclusions drawn from the 1D case [99, 93] led us to
consider the auxiliary fields E:=E— V% and u := g. The field E is the so-called regular part
of the electric field [2, Chap. 6]. From now on, we take § equal to a constant non zero value for
simplicity. Developing the algebra, it yields 6 curlu + i6eVu = aVu. Therefore the fields E and u
verify

aVufgf) = 0,
idu —curlE = 0.

Reformulated on the unknown u, it gives curl (ch*VU) — i0u = 0, where
1 a  —ié ot " 0 i
—1 _ _
£ _a2—(52<i5 o )‘ 252n+2 <0 1 >+252n+1 ( — 0)'
n>0 n>0
It yields the expansion
1 L (PR )

We study these equations in the geometry introduced in section 3.1.3. Given that a vanishes on
¥, the terms under the summation sign can be neglected as they are factor of a?"*+2 with n > 0.
Adding mixed boundary conditions, it comes down to solving

1
5 div(aVu)—u = 0 in
adpu+idu = f onl,

which for § =1 is our model problem (3.1.1).

3.3 Limit viscosity v — 07 solution

3.3.1 Variational formulations

Because the sign of o changes on ¥, it is natural to separate the problem on each side of 3, where
it has a fixed sign. For these subproblems, we show a well-posedness result in the Hilbert space

Q= Hll/z(Ql) X H11/2(Qg), equipped with the norm

lallg := lluallat ) + 2Lty for w0 = (ur, o).

(3.3.1)

Define the following problem

Find u € Q such that for all v € Q,

b(u,v) = £(v), (3.3.2)
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Chapter 3. From 2D resonances to a degenerate elliptic equation

where for u = (u1,u2) and v = (v1,v2) € Q,
Z (/ (aVuj Vivj - ujTj) dx —|—/ i)\ujvjds>
j=1,2 \"% L

Lv1,v2) = /fdes—i— fUads.
I, Ty

b((u1,uz2), (v1,v2)) (3.3.3)
3.3.3

Proposition 3.3.1. Let A > 0 and f € L?(T"). Problem (3.3.2) has a unique solution in Q.

Before proving Proposition 3.3.1, we prove Lemma 3.1.1 for w = ;.

Lemma 3.3.2. The weighted Sobolev space Hll/z(Ql) is compactly embedded into L?(£2y).

Proof. Let (up)nen C Hll/Q(Ql) be a bounded sequence. Up to a subsequence, u,, weakly converges
towards a limit in Hl1 /2 (©1), and substracting this limit to the sequence, one can consider u, — 0.
For all € > 0, define Qf := {(v,0) € Q1,|0| < ¢}. The H' and Hll/2 norms are equivalent on any

set 21\(2] since the weight « is positively bounded below on this domain: so ||u, | r2(q,\0¢) — 0.
To prove our claim, we show that as € goes to 0,

/ |ty|?dx — 0 uniformly in n.
1

Introducing the value of u,, on I'1, see subsection 3.1.3, it yields

/\un\QdX = // [un (v, 0)|*pa(y, o)dody

//, [n (v, 0) = un (7, —*)\ *pa(y, 0)dody

+2// |t (7y —flpn(% o)dody.

The second term is uniformly controlled by € as

IN

R*
// [un (7, =) Ppa(7, 0)dady < Oeljun|[Bar,, < C

For the first term, a Cauchy-Schwarz argument applied twice gives

0 R*
[ [ lunr0) = =50 ool opdods
Y —€

2
0 o
- / ], . Qnin(3:5)ds| pa(r,0)dody

< // (/ 5/ 10mun (35) ds) 05| 2| pa (1. 0)dody
< /</| [10mua(,9)] ds> (/ os| psz(%a)dd) o
< sgp</_0€10g ];* pa(y,0 )(// |d8d7>-
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3.3. Limit viscosity v — 0" solution

The first term is such that

[l
sup log
Y —e€

20

*

pa(y,0)do < Ce(1+ |logel) —>0 0,
€E—>
and the second one verifies

0
2
/// - [s] |0ptn(y,s)|” dsdy < C’||Oé1/2VunH%2(Ql) <M,

2

with M > 0 a constant independent of n. The result is established. O

Proof. [Proposition 3.3.1] Let A > 0 and f € L?(T). First, £ is a continuous antilinear form on Q.
In fact, for a given constant C' > 0,

eI < ez (lvillzzeey + lo2llzeeres))
< Clfllezmlivile

since the L2 norm on T is controlled by the H' norm in a neighbourhood of I' in €2, and that H*!
and H 11 , norms are equivalent away from X.
Second, the sesquilinear form b is continuous on @) x @ since there exists a constant C' > 0 such
that for all u,v € Q,

b(u, v)| < (2+ AC)[Jullqllv]le-

Third, b is the sum of coercive and compact forms. Denote by and by the forms such that for
u,v e Q,

bo(u,v) == — / uv7dx
Q

bi(u,v) = (ur,vi) (o) — (U2, v2)m1 (an) + > /F iAu;vjds.
j=1,271i
One can check that by(u, v)+b1(u, v) = b(u, v). This artificial decomposition is obtained by adding
and removing the L? scalar product of u; and v;, to obtain sign-definite problems on €; and .
For all v € Q,
1 0
— 2 —
Rebi(v,Tv) =|lv|]g for T= < 0 1 ) ,
hence b is T-coercive for the bijective operator T defined above.
The form by, equivalent to the L? scalar product on €, is a compact perturbation of b; on @
according to Lemma 3.3.2: for a bounded sequence (v™),eny C @, and up to a subsequence, its first
component v} converges in L?(Q1).
Thus b is associated to a Fredholm operator of zero index. The Fredholm alternative indicates it
suffices to prove injectivity, in the sense that if b(v,.) = 0 for a given v € @, then v = 0, to have
bijectivity.
Testing against (0,v2) and taking the real part, we obtain ||v2||H11/2(Ql) = 0. Testing against (v, 0)
we obtain first |[vy|/z2(p,) = 0. For all € > 0, the function v; also verifies the Helmholtz equation on
Ql\Qi = {X € Ql,diStE(X) > 6}
—div (aVv) —v =0.

Going back to the variational formulation one finds that 9,vi|r, = 0. The unique continuation
principle from partial Cauchy data implies that in €1\ one has v; = 0. Letting € go to 0, the
claim follows. O
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Chapter 3. From 2D resonances to a degenerate elliptic equation

Since the weak formulation (3.3.2) of (3.1.1) is restricted to H;,, solutions, it excludes log|o]|
singularities as seen in Subsection 3.1.1. Thus, it will only allow us to describe the regular part.
For the singular part, we will follow a limiting absorption principle which relies on a regularized
problem. The classical way is to introduce a complex shift « + iv [93, 33|, and then pass to the
limit v — 0". We will prove that for ¥ = 0" the limit solution decomposes into a regular part in
the weighted space @ plus a complementary singular part.

The remaining part of this section is devoted to show that the problem for v > 0 is well-posed
in H1(€2), which poses no real difficulties. For any v > 0, problem (3.1.2) can be formulated in a
variational way as

Find v € H*(Q) such that for all v € H(),

b (u, v) = £(v). (3.3.4)

The sesquilinear form is
b (u,v) = / ((a+iv)Vu- Vo — uv) dx + / iAuvds,
Q r
and for purpose of simplicity we redefine another function ¢ that coincides with (3.3.3) on H'(Q)

£(v) ::/FfUdS.

Proposition 3.3.3. Let v >0, A > 0 and f € L?>(T"). The weak formulation (3.3.4) of problem
(3.1.2) has a unique solution u” in H'(Q).

Proof. The continuity of forms b” and ¢ is straightforward, o being bounded and the L? norm on T
being controlled by the H' norm on €. Let us show b” is coercive. For all u € H(Q),

Imb” (u,u) > v||VulFziqpe and  Reb”(u,u) < ”a”LDO(Q)/ [Vul?dx — [Jul|72(q),
Q

so that for all C' > [|a|| p=(q)/v, Re (—(1 +iC)b”(u,u)) > min(1,Cv — HO{HLOO(Q))HU”%_Il(Q) and b”
is coercive. The Lax-Milgram Theorem can be applied to (3.3.4), which thus has a unique solution
u” in HY(Q). O
3.3.2 A family of quasisolutions

For any v > 0, we define a family of quasisolutions to problem (3.1.2). It is composed of functions
w, approximating the expected logarithmic singular behaviour as v — 0 with data g € H 2(%):

w(,0) = 9(v) <log (rp)o®+v%) <T(Z)U>> : (3.3.5)

2

When applying the differential operators (—=V - ((a + iv) V) —id) in Q and ((a + iv) 0, + iAid) on
I" to the family, we define the resulting quantities

g

zy = (o + iu)@nwlg’ + iAwy onT.

{qg = =V-((a+iv)Vwy) —wy inQ, (3.3.6)
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3.3. Limit viscosity v — 0" solution

Developing the equation in §2 from (3.3.6) and using (3.1.6), one has
q(y,0) = =0y ((oz+u/)8 w )|V'y| + (a +iv)0ywy (0, V) - V'y
+(a + i) dywy (0, VU) Vv — 0y ((a+zy V0w |Val? — w!

B [10/81% C)E UR/( mgg}

5
(e
[0 - ](('” i) T

where w¥ (v, ) = () (% log (r(v)202 + 12) — z‘atan(“yo)).

Proposition 3.3.4. Let v € (0,1) and g € H*(X). The manufactured solution wy, the right hand
side g belong to L*(Q) and the boundary term zl belongs to L*>(I'). Moreover, the bounds are
uniform with respect to v.

(3.3.7)

Proof. Let v € (0,1) and g € H*(¥). The manufactured solution is defined in (3.3.5) as a product
of g which is an H? function with respect to 7, of 1/r which is a bounded coefficient, and of the
sum of a logarithm and of a bounded term. As a consequence, wy belongs to L?(Q), and the bound
is uniform with respect to v.

Assumption (3.1.7) ensures that the fractions

a+iv o ola+iv)
r(Y)o+iv’ r(y)o+iv’  (r(y)o +iv)?’

are bounded, i.e. O(1), for small o with a constant independent of v. For the term
[ a+ v ] O, r(y)(a +iv)
60— . - T . )
r(y)o +iv r(y)o+iv  (r(y)o+iv)?
one finds once again that
0o r(ati) | _ |r(y)odoa—r(v)a| | vdsa—r(y)|
r(Me+iv  (r(y)o+iv)? (r(v)o)? 2v|r(v)o]

Refering to (3.3.7), gy thus amounts to a sum of square integrable terms independently of the value

of v.
Finally, for z;, since it involves the function wy and its derivatives away from the curve %, it is

indeed in L?(I') with a bound that is uniform with respect to v. O

=0(1) for small o.

Lemma 3.3.5. Let g € H*(X). As v — 0T, the L? limit of the manufactured functions defined

above are
witro) = 28 (toglrol - G sienr()o)) in 12(9),
_ —0 o R (y)R(7)
o) = [ oTRENR " (RC) - 7 et
< g7 -2 1(2)7 ) a(y, o)wi (v,0) + i(z) “ ’Y’T(nyggv U) (3:38)
#-0n+ =] (10252 -~ uino) in 22,
zf(v,0) = adywf +idw) in L*(T).
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Chapter 3. From 2D resonances to a degenerate elliptic equation

Proposition 3.3.6. For g € H%(X), the associated manufactured solutions depend in the following
way on g

lwillzz) < Cllgllczsy,  llaVw] (L2 < Cllglla (),

lag 2y < Cligllasy, and |[12] 2y < Cllgllar s,

for four positive constants C independent of g.

Remark 3.3.7. For any non trivial g € H?(X), function w; does not belong to Hll/Q(Q). On

the other hand, for any smooth function ¢ that vanishes on Y, the term (|a\1/2Vw3‘) ¢ is square
integrable. In fact, the most singular term in [, |o||[Vw [2¢? is

1 R 2
| [ e 885 6ot oo

which is indeed integrable since a(y,0) = r(y)o 4+ O(c?). Therefore w € H11/2+6(Q).
e>0

Proposition 3.3.8. Let g € H*(X). The a-weighted flux of w; on 3 is equal to g, in the sense
that for all h € L*(X),

/ a(v,0)Vw, (7,0) - n(y)h(y)dy = / g(Vh(7)dy.

Proof. Let v > 0. For all g € H*(X), and v € [0, 1],

a(v,0) +iv

WQ(’Y”“(’Y)P =g(7)

(@(7,0) + @) Vuwg(7,0) - n(y) =
According to Proposition 3.3.6, (« + iv)Vw} converges weakly in L*(X) towards aVw], so the
result is proven. O

Remark 3.3.9. This last proposition is essential for the decomposition in regular and singular
parts. We will introduce a singular coefficient g supported on ¥ representing the a-weighted flux
over the curve ¥ of the whole solution of (3.1.1). Going back to the 1D case, it corresponds to the
fact 2Y; has a trace at © = 0 and in this case the unknown g is reduced to the coefficient b, see
Subsection 3.1.1.

3.3.3 Decomposition of the solution in regular and singular parts

According to the Ansatz introduced in Subsection 3.1.1, we decompose u as

(3.3.9)

|
Qo

with the singular coefficient g € H?(X) yet to be characterized, and for j = 1,2, the regular part
u; € H! () such that

1/2
-V (aVu;) —u; = qf, in Q;
aOpuj +ilu; = f+z5, onT; (3.3.10)
adpu; = 0, on .
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3.3. Limit viscosity v — 0" solution

For a fixed g, these equations rewrite in a classical variational way

Find u € @ such that for all v € @,

b(u,v) = £,(v), (3.3.11)

where this time the antilinear form /¢, is defined by

ly(v1,v2) = Z /Q.q;vfjdx—i—/rv(f—i—z;)vfjds.

j=1,2
For f =0 and g € H%(X), we denote the solution u(g) = (u1(g), u2(g)).

Proposition 3.3.10. Let A > 0, f € L?(T") and g € H?*(X). There exists a unique solution
(u1,u2) € Q solution of the weak formulation (3.3.11) of (3.3.10). The solution is such that

luillz,, @) <€ (gl 2y + 1f 1 2(ry)

3.3.12
and Nzl (0 < C (lollirac) + 1 Flzae) (3:312)

for constants C' > 0 that are independent of f and g.

Proof. Under the assumption that ¢, is continuous, the proof of Prop. 3.3.1 shows that the problem
is well-posed for any A > 0, f € L*(T') and g € H?(X). And the continuity of ¢, is immediate
considering Prop. 3.3.6.

Testing against (u1,0) and (0, uz) respectively, we obtain the bounds

il ,

@) ~ llllzzn < Cllgllre) + 1 fllzry); (3.3.13)

and
[uallmz @0 < Clllgllaz) + [1fllz2my)-

Let us now precise the bound (3.3.13). We show that there exists a constant C' > 0 that is
independent of f and g such that

luallz2 @) < CUfllz2 ) + gl ())-

We proceed by contradiction as in e.g. [48]. Consider there exists sequences (fx)ren C L*(T),
(gr)ken C H?(X) and (u1 g)ken C Hll/Q(Ql) that verify for all k € N,

-V (aVuLk) — Uik = q;;, in Ql
adpuyr g +idurg = fr+2), onTy
adpur = 0, on X

and such that |[uy k||r2(q,) = 1 for all k and || fx|lz2(r) + l|gx||m2(x) — 0. Using relation (3.3.13),
we get that (u1,)ken is bounded in Hj »(Q1) norm. Therefore there exists uj € Hy (1) towards
which, up to a subsequence, u; j converges weakly in Hll/2 (€21) and strongly in L?(Q;) according
to Lemma 3.3.2. Thus ] is the weak solution of

-V (aVul) —Uuy = 0, in Ql
alpul +idu; = 0, onIy
adpu; = 0, onX
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Chapter 3. From 2D resonances to a degenerate elliptic equation

which means uj = 0. But this contradicts the fact that [|u}|/z2(q,) = 1.
So the bound (3.3.13) can be expressed exclusively in terms of the Hll/z(Ql) norm of u; as

lurller ) < CUlgllazs) + 11fll2m)
1/2
and the proof is finished. O

It is now necessary to find how to characterize the transmission condition on ¥, quantified by the
unknown g, to close the system.

3.4 A mixed variational formulation of the limit problem

3.4.1 Energy estimates

Let u” denote the solution of (3.1.2). We introduce the set of compactly supported, smooth and
positive cutoff around ¥ functions depending only on o, and not on ~

Co () ={peCi(Q),0,90=0,0>0,¢ls=1}. (3.4.1)

Let ¢ € Cj, (©2). We introduce a new unknown h € H?(X), which corresponds to a dual variable
associated to the unknown g. For a given h, testing the equation verified by u” 4+ wj against

MQD gives
| (=9 o i)V + i) W e = o+ ) dx = [ ailar+ wpeds.
Integrating by parts, it yields
/Q ((a + i) [V +wh))? ¢+ (o + i) (u’ +w)V(u +wh) - Ve — [u” +wh]? go) dx
RACERTES
wich implies
tm [ ((a-+ i)+ wf) VT T uf) - Vi + g + w)p) dx
/Q (u” +wp)|* dx > 0.

Definition 3.4.1. Let v > 0, ¢ € Cj  (Q). For all u € H*(Q2) and h € H*(X), define the quadratic

form

(3.4.2)

JY(u, h) = Im/ ((a +iv)(u+wy)V(u+wy) - Vo + g (u + wZ)go) dx.
Q
We also define the Hilbert space

V= Q x H*(Z) x H?(X),equipped with the norm

3.4.3
I, g, )y = llallg + gl z2s) + [Rllacsy- (34:3)

and the limit quadratic form such that for all (u,g,h) € V with u = (uy,us)

T (u,g,h Im/ h)V(Uj —w ) Vot g (u; w;r h)cp) dx.
j=1,2
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3.4. A mixed variational formulation of the limit problem

For a given (u, g, h), the quantity J*(u, g, h) is the formal pointwise limit of 7" (u, h) where u|q, is
a regularization of u; — w;‘ for j = 1, 2. Since relation (3.4.2) holds, the idea is now to minimize J+
under the constraint that (u, g) verifies equation (3.3.11). We define for this purpose the following
Lagrangian on V' x @, such that for all (u,g,h) € V and v € Q

LT (u,g,h,v) =T (u,g,h) +Im (b(u,v) — £,(v)). (3.4.4)

3.4.2 Mixed variational formulation

To begin with, define b+ the sesquilinear form on V x @ such that for all (u,g,h) € V and v € Q,

b (g, h).v) = 3 (

7j=1,2

/ (aVu; - Vo; — (uj + ¢ )v7) dx + / (idu; — z;')vjds> . (3.4.5)
Q,

j L'j

Remark 3.4.2. On V x @Q, it holds that b*((u, g, h),v) = b ((u,g,0),v) = b(u,v) — ly(v) + £(v).

Define a* a sesquilinear form on V' x V that verifies Imat = dJ . We choose the form defined for
all (u, g, h)., (v, k,1) € V by
a* ((u,9,h), (v, k1))

= alu; —w™ V(v; —w; -Vgp+q+ vi —wi p)dx
3 ), (otes = )V =) Vet =) 510

- [ (ol =V ) Ve — i )) dx

3
Note that at is anti-hermitian.

The Euler-Lagrange equations associated to the minimization of (3.4.4) have the following structure

Find (u,g,h) € V and A € @Q such that
{ at ((u,g,h),(v,k 1) — bt ((v,k1),\) = 0, V(v, k1) €V, (3.4.7)
b* ((u,g,h), 1) = p), Vi € Q.
We will see that with an arbitrary small regularization in g and h for the form a*, this form is
T-coercive on V', which allows us to apply the classical results of [13] and lead to the conclusion

that the regularized problem is well-posed.
For p, i € RT, we introduce the regularized form on V x V

a’;‘r ((u7 g7 h)’ (v7 k7 l)) = aJr ((u’ g’ h)7(V’ k7l)) +/L’ (7[) (g’ k)H2(E) JFILL(hI/? l/,)LQ(Z)) . (3'4'8)
Theorem 3.4.3. Let A >0, f € L?(T"), and p, u > 0. The reqularized formulation of (3.4.7)

Find (u,g,h) € V and X € Q such that
{ a;r ((u,g,h),(V,kJ)) - b+ ((Vakvl)vk) = 07 V(V’kVZ) € ‘/7 (349)
b+ ((U'?ga h>7l~l/) - Z(IJI), V[,I, S Q7

admits a unique solution.

Remark 3.4.4. Theorem 3.4.3 means that the regularization in v across the curve X has been
replaced by a regularization in p and p along X.
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Chapter 3. From 2D resonances to a degenerate elliptic equation

3.4.3 Proof of the well-posedness

Denote Bt : V — @’ the linear continuous operator such that for all (v,k,1) € V and p € Q,
(B+(V, k? l)u I‘I’)Q/7Q = b+ ((Va k7 l)? ll’) )

and let K := ker BT. Denote A}}K, : K — K’ the linear continuous operator such that for all
(u7g7 h)7 (v7 k7l) 6 Kﬂ

(Aferer (9. 1), (V. k1)) o, e = 0 ((w, 9. h), (v, K, 1)), (3.4.10)

The proof of Theorem 3.4.3 will consist in applying the following classical result.

Theorem 3.4.5 (Theorem 4.2.2 of Boffi-Brezzi-Fortin [13| in C). For any x € V' and s € Q’, the
mized system

Find (u,g,h) € V and A € Q such that
{ af ((u,9,h),(v,k, 1) — b ((v,k,0,A) = (K (V,kD)yy, Y(v,EDeV, (3.4.11)
bt ((umg?h)au) = (%’IJ’)Q’,Q7 V[.L S Q

has a unique solution if and only if A}K, is an isomorphism from K to K' and if In BT = Q’.

Proposition 3.4.6. Operator Bt is onto Q’.

Proof. This is a consequence of Prop. 3.3.10. Indeed, according to (3.4.5), B* is such that

(B+(u,g,h),u)Q,,Q =b(u,p) — Z (/ q;/Tjdx—&—/ z;ujds> .

j=1,2 \7% Ly

For any s € @', it has been proven that for all g € H?(X), there exists u € Q such that

b(u,p) = Z (/ q;ﬁjdx—k/ z;,ujds> +(om)gq YREQ.

j=1,2 \"%% i
As a result, operator BT is onto Q. O
Proposition 3.4.7. The kernel K of operator BT can be described as
K ={(u,g,h) €V, ul(g) = (u1(9),u2(9))}

Proof. As the last component in H?(Y) is a silent variable for BT, it is not constrained. Necessarily
(u, g) is such that b(u, u) = £4(p) for all p € Q, where the boundary term f € L?(I') is taken equal
to 0. Refering to Prop. 3.3.10, this is verified for all g € H?(X) by u(g) = (u1(g), u2(g))- O

Let us now address the properties verified by a™.
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3.4. A mixed variational formulation of the limit problem

Proposition 3.4.8. For all (u,g,h), (v,k,l) € K,

a®t ((w,g,h), (v, k1)) Z /Q q (v, —wi_,) —q (u uj —wy_,)dx

7=12
+/1" (z’Jlr( —wiy) =4 (uy —w, ) (3.4.12)

J

20wy — w,) (0 — wi,)) ds

and a™ is independent of the cutoff ¢, as long as ¢ € Cj (), see (3.4.1).

Proof. Let (u,g,h), (v,k,l) € K, with u = (u1,u2) = (u1(9),u2(g)) and v = (v1,v2) =
(u1(k),ua(k)) according to Prop. 3.4.7. Remark that
a* ((u,g,h), (v, k1)) - -
= Z / . (OZ(U]' - ’LU;r_h)V(Uj — wl:,r—l) . V((P _ 1) + quLr('Uj — w]ir_l)(@ _ 1)) dx

(oo = Wi )V (s = wi_) - V(o = 1) + qf (w5 = wi_y)(p — 1)) dx

Since |y, = 1 and o |Vw*|* = w + ¢1(7, o) with ¢, e € L2(), the terms in o |VwT|* (¢ — 1)
are integrable thanks to Hardy’s inequality, which ensures that 997_1 is square integrable on ().
Therefore the quantity

Z/ aV(v; —w;_ z) V(u; w;r_h)(gofl)dx

Jj=1,2

is well defined. The first two lines above thus rewrite

= % [ (ot =)V =) Ve =)+ 6T = v - 1) dx

_/ ( (v — w;:_l)V(Uj - w;—h) Vip—-1) +E(uj - w;r—h)(‘P - 1)) dx

= 3 [ (o) ¥ (- we - 1) il e - 1) ax

j=1,2

_ /Q, (w(w —wf )V (o — w6 =)+ (a —wf ) (e~ 1)) dx

= > [ (o9l w9 (o e 1)

j=1,2
(g = wly ) — el )(p - 1)) dx
- [ (@90 w09 (@ e - 1)

J

(v = 0+ g ) (g = wi ) (e — 1)) dx.
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Chapter 3. From 2D resonances to a degenerate elliptic equation

Since on each ; u; — wgth verifies weakly —V - (aV(u; — w;th)) — (u; — wiﬁh) = ¢ with
boundary conditions on I'; a0y, (u; — w;r_h) +iX(u; — w;_h) = f+ 2z, and since v; — w;_, verifies
the corresponding relations for g = k, h = [ and u; = v; = u;(k), integrating by parts and using
that (o — 1)|x = 0 it yields

A = Z/ -—wk laa( -—w;_h)—(uj—w )0y (v; w,j l))ds

7j=1,2
= Z / —wy, (vj —wi_))(— iA(u; _w;h) +25)
7j=1,2
wy = wi ) (=iA(; — i) +2)) ds
and the result is proven. O

Lemma 3.4.9. For all g € H*(Y),

Im/ q wy dX_T('HgHLz Im/(zj—ij)wf,}"ds.
r

Proof. For all € > 0, define ¥, a cutoff of X, a real valued piecewise affine function of ¢ such that
VYe(y,0) = 0if |o| < €/2 and Y. (y,0) = 1 if |o| > €. For all g € H?(X), using 1. and integrating by
parts,

Im/ g w;'dx

!ij% Im qg wy wgdx

= lim I ([ (alVuy Po.+ awf Vud - Vo, - [wf[26.) dx
Q

e—0

adpwy Fwd ds)
r

eli_r}(l) Im </Q owy Vw+ Vipedx — /1“(Z; - i/\w;)w;rds> .

Let us now compute this first integral on €2 for a given € > 0. Expressing the functions in terms of

(v,0),

Im aw; L Viedx
~ Im / [ 6 —2Ig 2 r(j)a (loglr(1)| — 17 sign(r(x)) ) pa(s,o)dody
o ///2 2|eg | :)J (10g|7“(v)0| +igsign(r(v))) pa(y,o)dody

—tm [ [ [P (toglr ol 1 sientr ) . o)

29N« .
er(y) r(y)o (log\r(7)0| +z§ s1gn(r(7))> PQ('y,J)]dady

for the weight po(vy,0) =1 — o/R(7) defined in (3.1.5). Identifying the imaginary part, it follows

— “2gNP o
Im/ awg Vw! - Vidx = // ndody
Q I 2 €|7”( )| r(v)o
\g
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3.4. A mixed variational formulation of the limit problem

which is equal to 7||g|| 12 () The proof is ended. O

With this technical lemma we can now state the following.
Proposition 3.4.10. For all (u(g),g,h) € K, one has
* ((Oa 07 h)a (070 h)) = 2”T||hH%2 (%)
@ (0(9),90) (9),9.0) = 2 3 [ (o) — i P

Jj=1,2

Proof. Let h € H?(X). According to (3.4.12),

+((0,0,h), (0,0, h)) /(q;ﬁ—ﬁw;)dwr/(z;ﬁ—ﬁw; — 2i\|wif|?)ds

Q r
2¢Im (/ qan whdx—l—/(zhwh — iAwy )ds)
Q

By Lemma 3.4.9, it is thus equal to 2i7||h[72 ). Now let g € H*(X) and u = u(g) € Q. Relying
again on (3.4.12), it follows

a* ((u(g), 9,0), (u(g), 9,0 Z/ —2i|u; — w;|?ds.

j=1,2
O

Proposition 3.4.11. Let p, > 0. The sesquilinear form a} defined in (3.4.8) is T-coercive on
K in the sense that there exists a positive constant C' such that for all (u(g),g,h) € K,

Imaj ((U(g),g,h),T(u(g),g, h)) > C’||(u(g),g,h)||v,

for T:(u,g,h) €V (—u,—g,h) € V. In particular, the operator A} ., defined in (3.4.10) is an
isomorphism.

Proof. Let p, p >0, and (u(g),g,h) € K. Using the definition of form a;” and the fact that a™ is
anti-hermitian, it follows from Proposition 3.4.10 that

Imaj: ((u(g)vg7h)a(_u(g)a_gah)) 27-‘-”h”%? (%) +2A Z ||u]( ) w;||2L2(FJ)

+p||g||H2(z) + M|h‘H2(Z)
CllglZz sy + 1Rl (s))

Y

for a C' > 0. Using Proposition 3.3.10 on the control of |[u(g)|lq by ||gll#2(x), we are able to
conclude. |

Proof. [Theorem 3.4.3] The hypotheses of Theorem 3.4.5 have been verified in Propositions 3.4.6
and 3.4.11. O

Remark 3.4.12. An equivalence between g — Al|u;(g) — w] ||z2(r) and the L?*(X) norm can be
obtained on the kernel of at, see Appendix 4.3.
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Chapter 3. From 2D resonances to a degenerate elliptic equation

3.5 Numerical illustration

The general objectives of this section are to confirm the theoretical analysis by showing numerical
results for the approximation of singular solutions of system (3.4.9) and to show that the mixed
variational method developed in this work is compatible with standard finite element solvers, such
as Freefem++ [62] in our case. To do so, we construct simple reference analytical solutions with
and without a logarithmic singularity and use them for numerical error measurements.

3.5.1 Construction of analytical solutions

We construct an analytical solution on a simplified model. Dropping out the 0 order term, which is
a compact perturbation, in (3.1.1), one has

{—div(aVu) = 0 inQ, (3.5.1)

adpu+idu = f onl.

Let © be (—1,1) x (=1, 1) with periodic boundary conditions at y = +1, with ¥ = {z = 0} and
a = x. A Fourier decomposition in the y-direction u(x) = >, ., ux(z) exp(ikmy) yields for all
modes

zufl +uj, — x(km)?up =0 in (—1,1).

The general solution is

(lkfo(k’l'r.’lf) + kao(k’iTLL') Vk 7& O7

uk() = ag + by | log |z| — %T sign(x)) k=0,

where the modified Bessel functions are given by

Io(x) = JO7(1—Z£E)7
Ko(SC) = 75 (ZJO(ZSC) + Y()(*Z.’E)) y

see Subsection 3.1.1 for the Bessel functions. We consider four test cases which respective solutions
are

w0 =1, w(x) = log |o| — 7 sign(), (35.2)
ud(x) = ™ Iy(rx) and u'(x) = ™V Ky(rx).

The functions u' and u? are solutions for the k¥ = 0 mode. For these two functions, one computes
easily the associated (u,g,h) € V and A € Q solution of the variational formulation (3.4.9).
According to the decomposition (3.3.9), one has

ul=1 and g'=0,
{ ué =0 and ¢?=-1, (3:53)
and in both cases, h = g and A\; = u;¢, where ¢ is the cut-off function that localizes near X. In the
illustration below, the cut-off function is p(z) = exp (4% /(42? — 1)) 1(_1/2,1/2)(2).
On the other hand, the functions u? and u* are solutions for the £ = 1 mode. One can compute
the corresponding (u,g,h) € V and A € Q as well.
The functions u' and u? are regular, while the functions u? and u* exhibit the logarithmic singularity
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3.5. Numerical illustration

which is the object of this study.
With A = 1, the boundary condition source term f in (3.5.1) is determined accordingly and

'@ =i ) = (0 ) sie(),
F3(x) = e™ (nI)(nx) +ilo(rz)), f4(x) = ™ (nKj(rx) + iKo(r)).

3.5.2 Principle of the discretization

The tests were implemented using the Freefem+ -+ [62] code. Freefem++ offers a large choice of
bidimensional finite elements, but does not allow so far to discretize a generic bilinear form like
ap(un, vp) where up, belongs to a 1D FE space and vy, to a 2D FE space. Since we need this feature,
we have decided to focus on simple geometry and to use a penalization method to constrain a
2D FE space to unidimensionality. For this reason, the H?(X) space is discretized using 2D P3
Hsieh-Clough-Tocher (HCT) elements [28] penalized in the z-direction on a 2D triangular mesh
denoted XM, The upper script M stands for the number of triangles that lie on ¥. The more
standard H'(Q;) 2D spaces are discretized using P1 elements on uniform triangular meshes of 2;
denoted Q;V , where the upper script N stands for the number of edges on each I';. In the presented
test cases, the parameters are M = 4 for the P3 elements and N = 40 for the P1 elements.

The discretization of (3.4.9) leads to the linear system
AU =L (3.5.4)

with U = (u;,uy,9,h, A1, Ay) the coefficients of the solution in the appropriate FE bases, and where
A and L have block matricial structures

A 0 Ap A Br 0 0

* Ay Agp Az 0 DBy 0

_ * % Ay A Bir Bo | o
A= x % x A, 0 0 L= 0 (3:5:5)

x % * * 0 0 4

* * * * * 0 L

2

As a consequence of the structure (3.4.9) and because the sesquilinear form a™ (3.4.6) is anti-

hermitian, the matrix A is anti-hermitian A = —A". Note that the penalization used to achieve
unidimensionality is performed in a similar way to (3.4.8), so that the anti-hermitian nature of the
matrix is preserved.

3.5.3 Numerical results

The numerical solution is obtained by solving the linear system (3.5.4)-(3.5.5). With the numerical
implementation described above, we observe that the matrices are non-singular and the computations
run smoothly.

Numerical errors

In Table 3.1 we present the relative errors in L?(£2) norms for the four test cases on the total
solution u of (3.5.1). We observe a relative error of order 10~ for all problems even for this coarse
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Chapter 3. From 2D resonances to a degenerate elliptic equation

mesh. We also observe that the error magnitude is slightly smaller for the case 1 in mode 0 and
case 3 in mode 1. Our interpretation is that it is due to the regularity of u' and u3, whereas u?
and u? have logarithmic singularities.

‘ case 1 case2 <cased cased

0.017 0.047 0.008 0.024

||'U/ex - unumHL2
|tez || L2

Table 3.1 — For the four test cases of (3.5.2), relative L%(£2) error between the exact solution e,
and its approximation wyym = uj — w;.

In Table 3.2, we present the block residual errors of AU — L. The block residuals are defined from
(3.5.5) as the residuals for each of the 6 unknowns. It allows a more accurate description of the
residual error. We perform the test for the test cases 1 and 2, which means that U takes the two
exact values

1% 0
1 0
ut = 0 and U? = ~1 (3.5.6)
— 0 —_— _12 . .

Ql OM

PN
Qo

PN 0

In this expression cf. (3.5.3), I%j and (p%j are the coefficients of the P1 interpolations of the functions

1 and ¢ in H'(£;), and 13, are the coefficients of 1 in the HCT space.

A priori, a residual error is the result of three main contributions which are an interpolation error,
a penalization error, and errors due to the approximation of the bilinear forms.

We observe in Table 3.2 that all block residual errors are close to machine precision, except for the
first four blocks in test case 1. After inspection of the structure of A and the nature of the exact
solutions (3.5.6), our interpretation is that when machine precision is reached, the only significant
error comes from interpolation errors.

norm case 1 case 2
u1 block LQ(Q) 0.0419775  7.76013e-16
ug block LQ(Q) 0.0491617  7.14962¢-16

g block L?*(%) 0.0360422  3.86971e-12
h block LQ(E) 0.0361913  4.37914e-12
A1 block  L?(Q2) 7.04875e-15 7.68808e-16
Ao block LQ(Q) 7.29193e-15 2.70813e-15

Table 3.2 — Residual errors in L? norms for the two first test cases.

Plot of the numerical solutions in cases 3 and 4

The imaginary part of the numerical approximation of the solutions u? and u* is shown on the
right part of figures 3.2 and 3.3. The exact solutions, which are Bessel functions modulated in
the direction y, are shown on the left part of the figures. The trace of the 2D FE mesh is also
visible, together with the vertical line ¥. In Fig. 3.2, we observe that the numerical solution on the
right is qualitatively and quantitatively very similar to the exact one on the left. The Fig. 3.3 is of
greater interest since the exact solution presents the logarithmic singular behaviour. Qualitatively,
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3.5. Numerical illustration

the results are very similar and the logarithmic singularity seems to be correctly captured by
the numerical solution. Quantitatively, the L? norm of the relative error is small, as reported in
Table 3.1, even if a small discrepancy is visible, partly due to a different scaling between both
representations.

Im(u_ex) Im(u_tot)
IsoValue IsoValue

Figure 3.2 — Imaginary parts of the exact solution u?(x) = €™ Iy(7z) (left) and its approximation
(right).

Im(u_ex) Im(u_tot)
IsoValue IsoValue

Figure 3.3 — Imaginary parts of the exact solution u*(x) = ™ K (mwx) (left) and its approximation
(right).

Plot of the numerical solution of the full problem

We now consider the initial equation —V - (aVu) — u = 0 from (3.1.1). For this problem, we do
not know any analytical solution. In the matrix A (3.5.5), only the blocks A; and A, are modified

by adding block diagonal terms corresponding to the discretization of fQ_ uév ’uév . The results are
J

displayed in Fig. 3.4 and can be compared to the results of figures 3.2 and 3.3. We observe that the
logarithmic singularity seems to be present in both illustrations in Fig. 3.4.
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Chapter 3. From 2D resonances to a degenerate elliptic equation

Im(u_tot) Im(u_tot)
IsoValue IsoValue

0622144
-0,00266889
616806
23
5:
7:
9
il
3;
5;
0

0616
1.236:
1855
2,475
3004
3714
14333
14:953
6501

Figure 3.4 — Imaginary parts of the numerical solutions to the complete variational formulation
(3.4.9) with BC f3 (left) and f* (right).

Comments on the value of the penalization parameters

The numerical illutrations presented above have been obtained with small non-zero values for the
penalization parameters (3.4.8). Non-zero values of the penalization parameters are compatible
with the theory presented in this work. Arbitrarily, we used the values p = 1072 and u = 1074,
However, other simulations taking these parameters equal to 0 lead to results with similar accuracy.

92



4 More numerical results

In this Chapter are gathered two classical results about error estimates from the book of Boffi,
Brezzi and Fortin [13] applied to the discretization of complex mixed variational formulations of

type
Find (U, A) € V x Q such that
{ a(UW)=b(W,X) = k(V), YWeV, (4.0.1)
b(U, i) = lp), VpeQ,
along with illustrations by the 1D mode coupling case or by the 2D X-mode case. A Python code
was fully developed for the 1D simulations, and the FreeFem software was used in 2D.

In what follows, we assume that }V and Q are two Hilbert spaces, that a and b are two sesquilinear
forms defined on ¥V x V and V x Q respectively, and we set

K:={WeV, b(W,u)=0Vu € Q}.

4.1 Discretization of mixed variational formulations

The structure of (4.0.1) encompasses the two mixed formulations derived for v = 07", (2.3.7) in 1D
and (3.4.7) in 2D. In these cases, the Hilbert spaces are:

e in1D:V=H'Q)x H(Q) x Cand Q = {pu € H'(Q) x H'(2), N(0)p(0) = 0},

o in 2D: V= H} () x HL,(Q2) x H() x H*(S) and Q = HL (@) x H} ().

The following theorem gives error bounds between the exact solution and its approximation by a
solution in the finite dimensional subspace V,, x @, C V x Q under the condition that both the
problem in V x Q and the problem in V;, x Q}, are well-posed. Before stating the result, we define the
operator By : Vi — Qj such that for all (Vh, p,) € Vi x Qn, one has (ByWh, py) 0,0, = b(Wh, i)

Theorem 4.1.1 (From Theorem 5.2.5 in Boffi-Brezzi-Fortin [13]). Let (U,A) € V x Q and
(Uns An) € Vi x Qn be respectively solutions of problems (4.0.1) and
Find (Uh,)\h) € Vh X Oy such that
{ a(Un, W) —b(Wi, An) = k(Wh), VWi € W, (4.1.1)
b(Un, ) = Upy), Yy € Qn.
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Chapter 4. More numerical results

Assume that the inf — sup condition

inf sup 7|b(wh’uh)| =p5>0

mewiev, [Whllvlimlle

is satisfied and let a(.,.) be uniformly coercive on K := ker By, that is, there exists g > 0 such
that
Re (a (Won, Won)) = aol|[Wonlly,  YWon € K.

Then, one has the following estimate, with a constant C' depending on a and b but independent of h:

(U= Unlly + 1A = Anlle < C( inf ||U —Whlly + sup A_l"h”Q) .
WhEV, 1, €O

Moreover, when we have the inclusion of kernels K, C K, we have the better estimate

— < inf — .
U Uth_Cm}hrévhHU Whllv

In the three following subsections, we present the discretizations performed for the numerical
simulations of the mixed formulations (2.3.7) and (3.4.7) as well as the numerical simulations of the
mixed formulation in 1D for v > 0 (2.3.19), that does not exactly fit the frame presented above.

4.1.1 Discrete problem in 1D for v =07

For the 1D problem of Chapter 2, the finite dimensional Hilbert spaces considered are
Vi = P1(Q") x P (Q") x C,

Qn = {u € P (Q) x Py (2", 1(0) € spang ( —]gfo) )} .

Here P; (") is the 15¢ order Lagrange finite element space on the 1D mesh

h N—-1
o = igo <x7%+i,x7%+i+l), (4.1.2)

where x; = i¢h, hIN =2 and N is even so that zg = 0 is a node.

’(/J'
1 N
|
e l ! l x
0 1
1=z y o ?xi Ty '

Figure 4.1 — Sketch of the mesh Q" and of a Lagrange P; basis function ;.

The space Qj, is thus spanned by the basis composed of

(07 wz)t Vi 7& 07
(¥i,0)" Vi # 0, (4.1.3)
(kZ7 _6(0))t¢0a

where the 1; are the Lagrange Py basis functions centered at x;, as sketched in Fig. 4.1.
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4.1. Discretization of mixed variational formulations

4.1.2 Discrete problem in 2D for v =07

For the 2D problem of Chapter 3, we used
Vi = Py (QF) x Py (925) x HCT(S;,,) x HCT(S;,,),
Qn =P () x P1(025),
with Lagrange P; finite elements on 2D triangular meshes Q;‘ of ©;, 7 = 1,2, and with Hsiegh-

Clough-Tocher (HCT) finite elements on a virtual 2D mesh for ¥, as explained in Subsection 3.5.2.
The HCT elements are globally C!, and P3 by parts [27, 10].

Figure 4.2 — Meshes of Qf and Qf (left) and of X"

0t (right) for h =.

This non standard discretization choice was prescribed by the avaiblable features of the FreeFem
software. 1D elements are not available, so that we chose to extend the line ¥ in a virtual X,
and to penalize the unknowns in the transverse direction to X. Furthermore, because of the terms
in @™ consisting in integrals on 2; mixing unknowns on ¥ and on 2;, it was necessary to take
Yvirt = . See Figure 4.2 for the meshes of both €; and of ¥, for a given h. Finally, since these
unknowns must be C!, the only finite element space on hand with such regularity was the HCT. We
discretized a toy geometry with exact solution, to have numerical evidence that the new formulation
at v = 0T could catch the singular solution.

4.1.3 Discrete problem in 1D for v > 0
The v > 0 mixed formulation in 1D (2.3.19) is slightly different since its structure is
{ a(UW) =bv(W,X) = kW), YW eV,
v (U, p) = lp), VYpeQ.

By definition of b” with respect to v, see (2.3.14), this problem is not equivalent to (4.0.1). Yet it
is still a variational formulation and we carry on a straightforward finite element discretization.
The Hilbert spaces are here V = H*(2) x H*(2) x C, as in the 1D v = 0% case, and Q = {u €
H(Q) x HY(Q), T () = 0}. Once again, we used Q" as defined in (4.1.2). The finite dimensional
spaces are

Vi = P1(Q") x P (Q") x C,

Qy = {pe PL(Q") x By (), T¥ () = 0}.
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Chapter 4. More numerical results

We restate the definition (2.3.17) of IV

v 1 52 ok, — 1 0 —
F(“)”/gz(w“(akz 2 )Wlﬂ"(o o>w1)dx'

It yields that TV (u) = 0 is a non-local relation. This non-locality is treated by taking as basis
functions for the space Q) linear combinations of v; and vy. The basis for Qy, is composed of

(07 A(ﬂpl - Ailbo)t Vi 7& Oa
(Dot — Airho, 0)" Vi # 0, (4.1.4)
(_szOa Ao)td}o,

for the coefficients defined for 0 < |i| < N/2 by

A e /Q ) o) (. CE (@) + 0 ()

R L((E) (x Vig €T V(ix vy;(x V(x €T
avi= [ (e O @R @) + i) )

Remark 4.1.2. As v — 07, both A; and A; go to zero for i # 0, and

AO — 717
|
A() — —m.
|

Therefore, the basis (4.1.4) converges towards (4.1.3).

4.2 Numerical experiments in 1D

In this section we present a convergence table for the three formulations considered in Chapter 2:
the classical formulation of the regularized equation (2.2.1) and the two new mixed formulations,
(2.3.19) for v > 0 and (2.3.7) for v = 0F. We recall and renumber these equations:

Find u € H'(Q)? such that

b (u,v) = /(v) Vv e HY(Q)?, (1)
Find (u,s) € V and A € Q¥ such that
{ a”((u,s), (v, 1)) =b="((v,t),A) = 0, V(v,t) eV, (2)
b ((u,s), p) = (n), Ymeq,
Find ((u,s),A) € V x QT such that
{ at((w,s),(v,t)) =b((v.t),A) = 0, V(v,t) €V, (3)
b((ua S), ”’) = 5(#)7 Vp e Q+-

The convergence table corresponds to the Whittaker test case detailed in Subsection 2.4.1. In this
configuration, the solution to the limit ¥ = 0T resonant Maxwell’s equations is known and we
denote EZV the exact solution for the component E,. Table 4.1 corresponds to the relative errors
on the component E,

h

1BV || 220
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v | Ea. | N=g8 16 32 64 128 256 512 1024 2048 4096
101 (1) 1.52e-01 1.19e-01 1.10e-01 1.07e-01 1.06e-01 1.06e-01 1.06e-01 1.06e-01 1.06e-01 1.06e-01
(2) 2.15e-01 1.37e-01 1.14e-01 1.08e-01 1.07e-01 1.06e-01 1.06e-01 1.06e-01 1.06e-01 1.06e-01
10—3 (1) 1.21e-01 6.18e-02 3.04e-02 1.46e-02 7.1e-03 3.5e-03 2.0e-03 1.4e-03 1.3e-03 1.2e-03
(2) 3.98e-01 1.22¢-01 3.77e-02 1.53e-02 7.2e-03 3.6e-03 2.0e-03 1.5¢-03 1.3e-03 1.2¢-03
10-5 (1) 1.23e-01 6.39e-02 3.22¢-02 1.61e-02 8.1e-03 4.0e-03 2.0e-03 1.0e-03 4.9¢-04 2.3e-04
(2) 4.06e-01 1.24e-01 3.83e-02 1.60e-02 7.9e-03 3.9¢-03 2.0e-03 9.9e-04 4.9¢-04 2.3e-04
10_7 (1) 2.23e-01 1.03 1.02 1.02 1.02 4.0e-03 2.1e-03 1.0e-03 5.1e-04 2.5e-04
(2) 2.23e-01 1.03 1.02 1.02 1.02 4.0e-03 2.1e-03 1.0e-03 5.1e-04 2.5e-04
10-9 (1) 1.03 1.03 1.02 1.02 1.02 1.60e-02 2.10e-03 1.02 1.02 1.02
(2) 5.22e-01 1.63 3.11 4.23 4.74 4.73 5.24 5.18 5.20 5.21
ot [ (3 T 1.26e-01 6.25e-02 3.17e-02 1.60e-02 8.1e-03 4.0e-03 2.0e-03 1.0e-03 5.1e-04 2.5e-04

Table 4.1 — L? relative errors ||Ey — E)V || 120y /[ E}Y | 2(q) between the computed solution Ef, and
the Whittaker solution for v = 07 EV, hN = 2.

where E2 is the solution of the finite element discretizations of the three systems above, see
Subsections 4.1.1 and 4.1.3, for different values of N the number of cells (hN = 2). For each N, the
errors for systems (1) and (2) are given for different values of v.

The Table 4.1 is a double entry table of convergence with respect to the mesh parameter in abscissa
and to the viscosity parameter in ordinate for the discretizations of formulations (1) and (2). The
last line corresponds to a viscosity v = 07, and to the convergence with respect to the mesh of the
discretization of formulation (3). We observe that:

down to v = 1077, both errors of the discretizations of (1) and (2) are the same,

for v = 1075, the error of the discretizations of (1) and (2) converge at order 1,

for v = 1077, the errors of the discretizations of (1) and (2) are unacceptable for the meshes
ranging from 16 to 128 nodes,

for v = 1079, the errors of the discretizations of (1) and (2) are unacceptable,

for v = 0%, the error of the discretization of the limit formulation (3) converges at order 1.

These tests justify the utility of the limit formulation (3) in the regime of small viscosity.

4.3 Relaxation of the regularization in 2D

In this Section, we present some results that suggest that the regularization of the mixed formulation
(3.4.7) in Chapter 3 is unnecessary. Recall the mixed formulation in 2D

Find (u,g,h) € V and A € Q such that
{ at ((u,g,h),(v,k,1) — bt ((v,k,1),A) = 0, V(v, k1) €V, (4.3.1)
bt ((uag7 h)v“’) = f(u% V€ Q.
The form a™ is continuous in norm |.||y (3.4.3), and it is T-coercive, see Definition 3.1.3, in a
weaker norm with respect to the unknowns g, h € H?(X), see Proposition 3.4.10. The addition
of terms proportional to the H? scalar product of g and k via a parameter p > 0 and to the H?

scalar product of h and [ via a parameter p > 0 regularizes the problem in the sense it yields
well-posedness. The regularized form a,f reads

0 (0, 9,1), (v, 0) = a* (W9, 0), (vo ks 1))+ (= (9, F) sy + 1 (0 1) gy )+ (4.3.2)
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and the formulation is proved to be well posed in Theorem 3.4.3 for any A > 0, f € L*(T'), and
py >0, is

Find (u,g,h) € V and X € @ such that
{ aj ((uvga h)v(vakvl)) - b+ ((Vakvl)v)‘) = 07 V(Vakvl) € Vvv (433)
b* ((u,g,h), 1) = (), Vp e Q.

Yet the parameters p, p of the regularization can be taken infinitely small for the theory, and we
observe that with small or without regularization the numerical results are the same.

In the litterature, there exists error bounds for problems that are elliptic in a weaker norm than
the continuity norm. Let ||.||y« be a norm on V such that ||W|y» < ||[W||y for all W in V. The
weak ellipticity assumption on a form a consists in the two following hypotheses

3er > 0s.t. Re((a(W, W) > ¢ || W][3. YW € K, (4.3.4)
Jdeg st |a(U, W)| < co||U||y= [|W]|y= YU W eV. (4.3.5)

V*
The typical example for a weak norm is the L2 norm on H'.

Theorem 4.3.1 (From Propositions 5.1.1 and 5.1.3 and Theorem 5.2.6 in Boffi-Brezzi-Fortin [13]).
Assume that the inf — sup condition

b (W,
inf sup L2V i) |
€ Qwievy [Whllv- [l

is satisfied, and that the bilinear form a satisfies (4.3.4) and (4.3.5). Let k € V' and £ € Q.
Assume that the continuous problem (4.0.1) has a solution (U, X) and let (Uy, An) be the solution of
the discretized problem (4.1.1). Assume that there exists a linear operator I, : V — WV, such that
b(U —IIhZyW, ) =0 for all W €V and p,, € Qn. Then, we have the estimates

>p>0

|U — Un|

. — < inf _
v+ 1A= Mullo < C( it U — Wi

« 4+ inf ||IA — .
% ILhEQhH NhHQ)

If, moreover, K, C K, then we also have

|U — Un|

L < C inf U =W |lp-.
v < wlfévh” hllv

1/2

In (4.3.1), a™ is T-coercive in norm ||.||« : g — (225 luj(g) — w;HQLQ(F)) with respect to g and

in L? norm with respect to h, see Proposition 3.4.10. We now present a computation that gives
the equivalence of this norm |||, with the L? norm under the constraint that (u(g), g,0) is in the
kernel of the operator A} ., (3.4.10).

Proposition 4.3.2. For all g € H*(Y), if (u(g),9,0) € ker AL ., then
Alluj(g) = w;r||2L2(r) = 7T||9||2L2w(2)~

Proof. Let g € H?(X). For € > 0, let . be the cutoff function defined in the proof of Lemma 3.4.9
that removes a neighbourhood of size € around ¥. One has (u(g),g,0) € K, so that noting

u(g) = (u1,us),

Z (/Q (aV(uj —w}) V(he(u; —wy)) — |u; — w;\2z/}6) dx—i—/ iAu; — w;|2ds> =0,

j=1,2 j Ty

98



4.3. Relaxation of the regularization in 2D

and

Imz/ aV(u; —wi) -V (belu; —wi)) dx =AY lluy —wi Faqr, -

j=1,2 j=1,2
The left hand term can be expanded as

ImZ/Q.aV( i —wg) -V (Ye(u; — ;))dx

j=1,2

~Im Y /Q (aVTj~V¢6uj — aVT; - V() — aVuy - V(eu;) + aVwyg - Vwew;”)dx

7j=1,2

We compute in a first instance the limit as € goes to 0 of [ aVu; - Vipu;. Noticing that 1 — ¢, =
@e € Cy (), it yields

ImZ/ aVuy - Vipeujdx = —ImZ/ aVu; - Vpeudx

Jj=12 j=1,2
= —Im Z aVu; - V(peu;)dx
j=1,27 %
= —Im Z i —dg <p€u]dx ey 0.
j=1,27%

Secondly, the integral f aV@ . Vwew; has already been studied in the proof of Lemma 3.4.9 and

Im Z / ang Vipew, dx = —7ngH%%U(E)

Jj=1,2

Lastly, the remaining terms are gathered in

=1Im Z / aVa; - V(iew )+ang . (weuj)) dx

Jj=1,2
and it follows
)\421:2"11’]‘ — w72, +7ll9lZe ) + lim A = 0. (4.3.6)
J=1,

It remains to compute the limit value of A.. Under the hypothesis that (u(g), g,0) € ker A} ./,
taking as a test function (v,k,l) = (0,0, ¢g) and keeping in mind that a™ is independent of the
cutoff function as proved in Proposition 3.4.8, one has
0 =Ima* ((u(g),9,0),(0,0,9))
=Im Z / (a(uj — w;)Vwij- Ve — awy V( —w}) - V.
j=1,27%

—qq (u; — w;‘)gpe) dx
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Chapter 4. More numerical results

Since ¢ and u; — w} are in L?(;) and that ¢ — 0 with € in L*(2), it implies

0 = lim Im Z / (a(uj - w;)Vwij{ Ve — aEV(uj —w))- Vgoe) dx
Q;

e—0
j=1,2

—lim Im Z / (a(uj - w;)Vwij- Ve — aEV(uj —wy)- Vl/ig) dx
Q;

e—0
j=1,2

= —lim Im Z /Q ((aujV@- Vi — OKEVU]‘ . Vwe)

e—0
j=1,2
+ (owd Vof - Voo - awg Vg - Vi) ) dx

= —1ir% A, +2Im Z / aw;Vwij-Vibsdx
Qj

€—
j=1,2

_ 2
= —E%AE +27llgllz2 (-

Substituting lim A, by its value, using (4.3.6), the result is proven. O

These preliminary results seem to point the well-posedness of the discretized problem without
regularization. However, the analysis of the problem must be completed to obtain a convenient
well-posedness proof. In addition, using other tools and studying the limit as p, u — 0 of problem
(4.3.3) might also lead to a proof of well-posedness for the continuous problem (4.3.1).
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5 An advanced model

In this chapter, we adapt the construction method of manufactured solutions to a plasma model
with thermal effects [110, 41]. In this model, the viscosity is not a linear contribution as for the
cold plasma model: thermal effects add a differential term of order 2.

5.1 The warm plasma model

A simple way to add thermal corrections to the cold plasma model is to add an isotropic pressure,
and consider the tensor p = pI in (1.2.3). The Euler equations with Lorentz force, friction and

pressure we consider are

MmeNe(—iwue +ue - Vue) = —¢eNJ(E+u. AB)—m.N.vu, — Vp, (5.1.1)
—iwN. + V- (Neue) = 0. o
We assume that p obeys to the isothermal equation of state
p(x) = Ne(x)kpTrer- (5.1.2)

We define the thermal speed of electrons vy, = ,/k‘ini];”f, and suppose that these thermal effects

are small. Following the scheme of Fig. 1.3, as for the cold plasma model, this equation on the
dynamics of electrons is then coupled to the Maxwell’s equations on the electromagnetic field via a
linear current

C

w2 .
VAB-— (7) E = 7Zw,u0queuea (513)
B-VAE = 0.

Similarily to Section 1.2, we then study oscillations around a steady state. The steady state now

consists of (E, B, 4., Kf;) = (0,Bg,0, N. ), and the pressure reads at first order

p=po+p1= Ne,OkBTref + Ne,lkBTref-

For simplicity of notation, we further design by B, p and N, the first order terms B, p; and N ;.
The electrons’ dynamics (5.1.1) write at first order

(5.1.4)

_iwmeNe,Oue = _QeNe,O(E + ue A BO) - meNe,OVue - vpa
—iwNe + NeoV-u, = 0.
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Chapter 5. An advanced model

By definition of the isothermal pressure (5.1.2) and Gauss’ law which states

—g.N,
V. E=£ = Zlete (5.1.5)

€0 €0

system (5.1.4) allows to express u, in function of the electric field E as

. gom
—iwmeNe gue = —@eNe o(E + ue A BO) — meNe ovue + 0 evfhv ® VE. (5.1.6)
de
Equation (5.1.6) only differs from the corresponding cold plasma approximation equation (1.2.5)
by the last term, proportional to V ® VE. Therefore, refering to the computations of Section 1.2,
it leads to the dependency

%) —iWe 0
@2 —w? w0?—w? q €0
_ iWe @ e 2
o= | 725 ez O (‘Zm ti vV e® V) E,
1 e eiVe,0
0 0o 1

for @ = w + iv. Introducing this quantity in (5.1.3), one has

&zwg —iwcwg
2 w(0?—w?) (0?2 —w?)
VAB-— (g) iwcw;‘; &)wp

w(@?—w?) @(@2-w?)

’1)2
(I—%‘V@V)E = 0,
“p

Et\;"caw SR

0 0
B-VAE = 0.

After simplification, we focus on

VAB— (& + 14 VaV)E = 0,
{ B_-YAE 0. (5.1.7)

where ¢” is the tensor already defined in (1.3.10), and 7 > 0 is a constant related to the thermal
effects.

The divergence of the Poynting vector is now

vV -I(E",BY) = ImV-(E"ABY)
= Im(VAE”-B"—-E"-VABY)

— Im (lBV|2 _E¥. (éy + V3TV ® v) EV) (518)
= v[EP —v37Im(EV- V@ VEY),
and the heating for ¢ € Cj | () is
Im/ (B” ABY) - Ve + 7 (B -V & VEP) ) dx > 0.
Q
In 1D X-mode, the regularized system writes
(—(a+4iv)+v3782)EY —i0E; = 0, inQ=(-1,1),
—0.B, +i0E; — (a+iv)Ey = 0, in Q, (5.1.9)
BY -0,E, = 0, in Q.
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5.2. Construction of manufactured solutions

The new term which enriches the mathematical model (1.3.9) is the viscosity related term v*>792EY.
The heating is now

Im/Q (E;?g - VSTE;@/) o'dx > 0.

At v = 0, the resulting system of equations is the same as for the cold plasma model.

5.2 Construction of manufactured solutions

The goal here is to show it is possible to construct a manufactured solution F* = (Fy, F/,0),
C” = (0,0,CY) and g” = (g4,9;,0), 9" = (0,0,¢7) for the system (5.1.9). This manufactured
solution must verify the relations

(= (a+iv)+v3702)FY —idF) = g4,
—0,CY +i0FY — (a+iv)F) = gy, (5.2.1)
CY — 0. F = ¢,

and hypotheses (H1)-(H2) from Section 1.3. Formally, similar computations to (5.1.8) lead to
V- I(E” — FY,B" — CV)
—Tm (|B” —C'+q (BY—CY)

~(EY ~F) - (& + 2V @ V) (B~ FY) + (B — F*) - &)

= v|BY — B[ +Tm (¢ - (B = ) + (B — F*) . &7

— 37 Im ((E” -F") - Ve V(E" - F”))
and the dissipation associated to the Poynting vector for ¢ € Cj , (Q) is
Im/ (BY = C2) - v'r(E, — FY) By — F2) ) ¢

+(gm<Em Fy) + gy(EBy — Fy) — ¢(BY — CY)) pdw > 0.

The system at v = 0 is the same as the cold plasma model with no viscosity: the same kind of
singularity is expected. Therefore, we combine the two v < 0 solutions and define for v > 0

Ey = M, + MQ, for pq,pus € C.
o+t a—w
Set
—1
Y= —.
Y )
It follows from the first equation of (5.2.1) that
v m 12 s —ma”  2u(e)? | e 2pup(a)?
—1- L . .
9= (a+w)<a—|—iu+o¢—i1/)+y T((a+iu)2 (a+iw)?  (a—iv)? (a—iu)3)
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Chapter 5. An advanced model

For the product FY g% to converge in L'(Q) towards the product of the limits FF g}, and as F;f is
proportional to 1/z, necessarily the limit of g% must vanish at 0. To begin with,

g%(0) =1 — (1 = 2i77®) (1 — p2) + v (0) (p1 + p2),

so that if 1 — po = (1 — 2i7r?)7L, g¥(0) — 0 as v goes to 0. Recasting g% with respect to ps and
to the value of p1 — uo yields

3

"2 v " v
go(x) =1— 1—2(e) Tt T VT iy
v 1— 21274
« 6ar® — 20303 o?vd — 1P
_ 2 2 AV 2 n_— - - .
HZ( a—iz/+ (o) (a? +1v2)2 * a7’<a2+u2)2>
As v — 07 one has
0 xz =0,

+
xTr) =
R R
We now present a computation of the integral of F¥g”¢ over (—1,1).

Proposition 5.2.1. For ¢ € C}  (Q), one has

1 Lo
[ rog@e@ e [ B @)

Proof. For simplicity, we prove the result under the assumption a(x) = rz instead of ra + O(z?).
Let v > 0. The function  — zFY(z) is in L°°(f2) uniformly in v. Therefore, we consider the
function ()
Gz \ T
h ==
() o= 2
According to the definition of g% (5.2.2), h is homogeneous of degree —1 as a function of two

variables. Rewriting all the terms of function h with the same denominator, it gives

P(v,x)

@) = a1 oy

(5.2.3)

5% order polynomial P(v,z) = a5z’ + a2t v +asz3v? +asx?v® + a1 xv* +agr®. By homogenity,

/1 h(z/,x)dx:/l h(l’x/y)dx:/l/y h(1,y) dy.

-1 -1 v —1/v

for a
one has

Using (5.2.3), one can eliminate the odd degree terms on z since

1/v 1/v
/ h(l,x)da::/ Mdm

—1/v —1/v (7"2£L'2+1)3

_ [ PQL) + PO )
B 0 (r2z? 4+ 1)3 v

Consequently, P(1,z) + P(1,—z) is at most of degree 4 on x, and as v — 0" one has

oo o 4 2 o] 4 2
/ h(l,o:)dx:2/ a4 ;rgzgx +ag dx:/ as* + a2z + ag d.
0o (PR e (2P IP

— 00

104



5.2. Construction of manufactured solutions

Define the function such that for all z € C,

a4z4 + a2x2 “+ ag
(r2z2 +1)3

Lz) =

The residue theorem [101] ensures

/°° asxz* + asz® + ap

)
dz = 2imRes(t, ).
(FP2a2 y 1 oA es(’m)

— 00
Since i/|r| is a triple pole, the following formula gives the residue of ¢ at this point

Res(. ) = 5 1w (e ) uc2)

|r 2 ot 022
1 0? (a4z4 + asz? + a0>

= — lim —
2eoy 0228 40 (2 4 ph)°

3ag + asr? + 3aqrt

- 16310 Il
At last,
! 3ag + asr? + 3ayrt

lim h(v,z)dz = |r|7.

v—0 1 87‘6
Since

1+ 1
p.V./ de = lim h(v,z)dz,
1 x v—=0 ) 4

the claim follows. O
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Domain decomposition methods for
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6 Introduction to domain decomposition
methods for wave propagation

In the study of resonant Maxwell’s equations from Part I, the equations were separated on two
subdomains and a non-local transmission condition over their interface was derived. In this Part,
we focus on domain decomposition methods for wave propagation, which are numerical methods
for which an iteration consists in solving the problem independently in several subdomains and
then exchanging information between the local solutions. The model problem is the propagation of
time harmonic acoustic waves in the free space governed by the Helmholtz equation coupled to the
Sommerfeld radiation condition
—Au — w?u f in R?,
{ Vu(x) - g — lwu(x) (|Ix]|=/2) (6.0.1)

< [
where 0 # w € R and f is of compact support. A computational domain (2 is defined as a bounded
domain containing the support of the source f, and the free space behaviour is simulated by defining
boundary conditions that approximate the radiation condition on I' = 0f). Before presenting the
new results in Chapter 7, we briefly recall the historical background of these methods and introduce
the main tools used in the sequel.

6.1 Idea of the method

The original idea of domain decomposition was given by Schwarz in 1870 [104]. The figure illustrating
the article is represented in Figure 6.1. The issue was to prove the existence of harmonic solutions

0 Qs
It 12

Figure 6.1 — Hybrid domain Q2 = ; U Q5 consisting in the union of a square and of an overlapping
disc.
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Chapter 6. Introduction to domain decomposition methods for wave propagation

to the Laplace equation in 2 with Dirichlet boundary conditions on I' = 92
{ Au = 0 in Q,

« — g onl. (6.1.1)

Since on each subdomain €2;, with Dirichlet conditions on 0€2;, the solution was known, the
suggestion was to solve alternatively the problem in ©; and in Q. Let T'* = 9Q; NT be the exterior
boundary and ¢ = 9Q;\I' be the interior boundary of €);, for i = 1,2. After initializing u° solution
to

Au® = 0 in Qo,
W = g on I'?,
u = irllfg on X2,

define the further iterations for p = 0,1,... by

Au?tl = 0 in Q, Aut2 = 0 in Qo,
w1 = ¢ onT!,  and then u?Pt? = ¢ on I'2,
uPtl = 2 on X!, uPt2 = 2rtl on 32

This is called the alternating Schwarz algorithm. As explained in [53, 52|, Schwarz proved using
the maximum principle that the positive series

vi=u + z:(u2er1 — %P,
p=1

w = u2 + Z(u2p+2 _ qu)7
p>1

are dominated by convergent geometric series and hence well defined, and that they coincide on
Q1 N Q. The function such that v := v in Q; and u := w in 5 is in turn well defined, and is a
harmonic solution to (6.1.1).

A second keystone was the study of the method brought up to date by Lions, published in a serie
of three papers On the Schwarz alternating method from 1988 to 1990 [80, 81, 82]. We emphasize
three improvements:

e the parallelization of Schwarz’ algorithm,
e the adaptation of the algorithm to more than two subdomains,
e new transmission conditions for nonoverlapping subdomains
(Ony + AT = (=00, + M)W and (O, + Ao)ub ™! = (=0, + No)uf !
with 0 # A\; € R and a proof of convergence of the algorithm using energy estimates.

After initializing u? in Q; for i = 1,2, the parallel Schwarz method on the example of the Laplace
equation (6.1.1) is given for p =0,1,... by

1 . 1 .

Au’lH' = 0 in Qq, Aug+ = 0 in Qy,
1 1

u’ﬁl = g onll and u§+1 = ¢ onl?

u?Tt = Wb on B, bt = WP on X2
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6.2. Three tools for Helmholtz numerical resolution using domain decomposition

Remark 6.1.1. The illustration is given here on a two subdomains decomposition for simplicity,

but the interest of this parallel method lies in its use for more than two subdomains. Indeed, since

1 2 . . . . . . .
ub™ = u?, the computed u?*? in Q; coincides with an alternating Schwarz iteration based on u”

in Ql.

In the case of solving numerically (6.0.1) in a domain 2, a boundary condition on I" that lets the
wave propagate outside of the domain and introducing the least artificial reflection must first be
derived. But the Helmholtz equation is not a coercive problem, and is not endowed to a maximum
principle: the convergence of the algorithm is not guaranteed. In the next Subsection we present
how to adapt the Schwarz algorithm for this problem.

6.2 Three tools for Helmholtz numerical resolution using do-
main decomposition
6.2.1 Absorbing boundary conditions

The first step towards the numerical resolution of (6.0.1) is the truncation of the space and the
definition of a boundary condition to close the problem

—Au—w?u=f inQ. (6.2.1)

There are several possibilities to model the free space behaviour. We focus in this work on the
definition of absorbing boundaries [42, 43, 45, 5, 74]. Another possibility is to define an artificial
layer near the boundary of the domain that behaves as an absorbing material, these are called
perfectly matched layers and were introduced by Berenger in 1994 [9].

Let n be the outgoing normal vector defined on I', and t be the associated counter clockwise tangent
vector. The absorbing boundary condition

Onu — iwu = 0, (6.2.2)

yields a well-posed problem in H'(Q2). However, the accuracy of this condition is of first order, and
it is known that second order ABC yield better results.

A classical second order condition is

Ontt — iw <1 + 13tt> u = 0. (6.2.3)

22

Another one, that has the property of being elliptic, is

2w?

(1 — 18tt) Onu — iwu = 0. (6.2.4)

However, for a domain €2 that has corners on its boundary, these second order conditions are not
sufficient, and additional conditions on the corners must be prescribed [74, 89).
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Chapter 6. Introduction to domain decomposition methods for wave propagation

6.2.2 Transmission conditions

Naom—

We now focus on a domain decomposition §2 = U Qz, for Ngom > 2. The transmission conditions
=0

account for the continuity of the solution and of its normal derivative on the interfaces. Prescribing

both of these conditions comes down to computing the Dirichlet to Neumann operator, and is not

feasible. A first order condition is
Oniti + iwu; = —0piu; + iwu;. (6.2.5)
After initializing u? in Q; for 0 < i < Ngom — 1, the associated domain decomposition algorithm
using ABC (6.2.2) is given for p =0,1,... by
—AWPTT G = f in Q;,
Oni upJr1 + 1o.)up+1 0 on 9 NT, (6.2.6)

8n1up+1 + 1wup+1 —Onsuf} +iwuf  on 9Q; N 0Q;.

At a discretized level, the issue is that the convergence of this first order transmission condition
is not satisfactory, and that second order conditions require additional conditions as soon as 0€2;
presents corners, or even more critically when there are cross points, intersections of more than
three subdomain frontiers. A possibility is thus to use a layered decomposition of the domain
[8, 16, 25], as illustrated in Figure 6.2.

T T
| |
| |
| |
‘ ‘ ‘ ‘
! !
| |
| |
| |
1 1

Figure 6.2 — Domain decomposition geometries without interior corners or cross points.

6.2.3 Decaying energy

In this Subsection, we show how to use an energy related to the domain decomposition to prove
convergence of the method on the example of algorithm (6.2.6). See [8] for the original presentation
on a similar DDM. For 0 < i < Ngom — 1, let upH be the solution to (6.2.6) with f = 0, for a given

initialization (uf)Y4m. Define the so-called energy for p > 0
Naom—1
Er= ) / (|anlu 2 4 w? [u?| ) 5. (6.2.7)
LI=0 00inoq,
Proposition 6.2.1. The energy defined by (6.2.7) is decaying and verifies for all p > 0

Naom—1
et 31 [ (e ) o
i=0 o;Nr
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6.2. Three tools for Helmholtz numerical resolution using domain decomposition

Proof. Let p > 0. The definition of the energy gives

Naom—1 )
prtl Z / (6,111#’“‘ 2 u;;+1‘ >d7
LI=0 90inan;
Naom— Naom—1
= Z / Opiul T 4 1wup+‘ dy — 2Re Z / iwul T Ol T dry.
LI=0 90,000, LI=0 90,000,

It then follows from the transmission conditions that
JVclom_1 JVdc:)lm_1

Bt =y / | O ulf — iwu§|2 dy—2Re > / P D Ly
i’ij;() 9Q,N0%; i’ij:jo 99,;n09;
Naom—1 Naom—1
=B’ —2Re Z / iwuﬁ?mdy —2Re Z / iwul T Opeul T dy.
LI=0 00ino, LI=0 00.inoq,

The second term rewrites

Naom—1
—2Re Z iwuf Opsufdy
50
v 02iNoQ;
Ivdom_1 Jvdom_1
= —2Re Z /iwu?@njug?d'y +2Re Z / iwul Opsufdy.
=0 5, =0 9%, nT
First, the ABC yields 0, u? = —iwuf on 0§); NT'. Second, on each subdomain one has
/ \Vug’\ — wluf| ?)dx — /u?@njugdfy =0,
Q; o0
and therefore
Naom—1 Naom—1
—2Re Z / iwuf Opsufdy = —2w? Z / |u§|2d'y
LI=0 90,009, 7=0" aq;nr
The same relation holds at iteration p 4+ 1, and it completes the proof. O

It follows from Proposition 6.2.1 that EP converges towards a finite limit. Hence u?

zero on 0§); NT in L2 since for P > 0,

converges to

P Niom—

E° EP>2w22 Z / [u?|?dry.

=0 =0 H0,Ar

Because of the boundary condition, d,:u? also converges to zero in L? on the exterior boundary,
and a unique continuation principle leads to the convergence towards zero of u! in H'(€;) for all
the exterior layer subdomains €;, such that 092; NT" # 0. Applying the same arguments layer by
layer leads to uf = 0 in H 1(Q), and proves the convergence of the algorithm towards the global
solution u = 0.
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7 Corner conditions for domain
decomposition

This work is the first part of an ongoing project with Bruno Després and Bertrand Thierry.

7.1 Introduction

In this chapter, we define and study a family of second order absorbing boundary conditions for the
Helmholtz equation on a polygonal domain. The originality is that the algebraic properties of these
new absorbing boundary conditions yield convergent iterative domain decomposition methods, even
with corners on the exterior boundary. With respect to the litterature, it seems to be the most
original feature of this approach.

The reference problem for this work is the propagation of a time-harmonic wave v in R? generated

by a compactly supported source f. It is modeled by the Helmholtz equation coupled to the
Sommerfeld radiation condition

)((—A —w?u
Vu(x) - T iwu(x)

[ O Ixll oo

I
~
=
=
\.NJ

(7.1.1)

|

Q
j—
i

|
-
~
o
S~—

The radiation condition ensures that there is no sink of energy and hence that the problem is
well-posed.

To solve (7.1.1) using a finite element method, the propagation domain must first be truncated. To
introduce as little artefacts and reflection as possible one can use for example a perfectly matched
layer or an ABC, see Subsection 6.2.1. Define a bounded domain ) containing the support of f,
and its boundary I' := 9€2. Assume the computational domain is meshed with triangles, making it
a polygonal domain. These considerations lead to the Helmholtz equation in a polygonal domain

(—A —wHu=f inQ, (7.1.2)

to which boundary conditions on I' must be added. Let n and t be the unit outgoing normal and
tangential vectors to I' such that the local system (n,t) is direct. The system made of (7.1.2) and
of the first order ABC d,u — iwu = 0 is a well-posed problem in H'(2), but it is known that second
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Chapter 7. Corner conditions for domain decomposition

order ABCs yield better results. In this work, we use the coercive second order ABC
(_A — WQ)’U, = f in Q7
1
1— —0i | Onu—iwu = 0 onT. (7.1.3)
20?2

The boundary I' considered in this work is a closed broken line. Because of the differentiation of
Onu along T in the absorbing condition (7.1.3), additional relations have to be prescribed at the
corners of I') where n is not defined. The purpose of this work is to elaborate such relations.

A central idea for the development of corner relations that complement (7.1.3) is that the algebraic
properties of convergent DDMs for the Helmhotz equation must be preserved by the new conditions.

Conventions. The indices k and £ are reserved for the edges of the exterior boundary. The indices
i and j are reserved for subdomains of . With these notations, a point denoted A}/, belongs to the
intersection of the k" and of the ¢*" edges, and to the border of the i*" and of the j* subdomains.
A subtle distinction will be made by using either the subscripted nj for the exterior normal to £ on
the k' edge of I" or the superscripted n’ for the exterior normal to €; on its boundary 9€;. The
same distinction will be made between the tangent unit vectors tj, and t?. The index p is reserved
for algorithm iterations. The purely imaginary number is written in bold i> = —1. Norm ||.|| stands
for the Euclidian norm in R2.

7.2 Construction of corner conditions

7.2.1 Geometry and notation

We need notations which correspond to the edge and corner geometries illustrated in Figures 7.1
and 7.2. On an oriented edge I'y, = (ag, bx) of T, the unit tangential vector is ty = HEZ%ZII and the
unit normal vector is ng = —té-. At the boundary points aj; and by of I'y, which are corner points,

a unit vector T colinear to t; and pointing outside I'j is introduced. With these notations, for two

Ny

Tk tg Tk
bk Fk' ag

Figure 7.1 — Tangent and normal vectors t; and ny, and outgoing corner vectors T on a segment
[y = (ag, bg).

segments 'y, = (ag, bg) and 'y = (ay, by) with a common vertex by = a,, we denote this vertex
A=Ay, =by =ay.

The chosen convention is to characterize the angle between two such segments by a negative value

Ore € (—27,0), see Figure 7.2. The geometrically degenerate case 0y = —m will appear to be a
mathematical singularity of some of the formulations in this work. Another singularity will show
up for right angles 0y, = — 7, —37” in other formulations.
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7.2. Construction of corner conditions

Figure 7.2 — Local geometry at the intersection of two segments I'y, and I'y with by = ay.

Segment I'y, | Segment I’y

B <9k£> . (9ke>) B <9ke> . <9ké>>
n, = cos| — | ,—sin| — n, = —cos| — |,—sin| —
2 2 2 2
sin % cos @ Ty —sin @ cos %
2 )’ 2 2 )’ 2

Table 7.1 — Expression of I'y, and I'y tangent and normal vectors with respect to the angle 6, for
two intersecting segments at by = ay.

Tk

7.2.2 Quasicontinuity relations

The first goal here is to obtain two quasicontinuity relations at a corner point Ay, between two
segments for a plane wave u, as in Figure 7.2 with an incident angle 5 +n

Uy (x) = X with d, = (cos (g + 77) ,sin (g + n)) = (—sin(n), cos(n)) € R%,

At a corner point Ay, one has the following expressions of the derivatives of u,,

Onyun(Age) = iw(nyg, dy)uy(Ake),

On,tn(Age) = iw(ng, d,)u, (Ake), (72.1)
OryOnpun(Ake) = —w?(Tr,dy)(ng, dy)uy(Age), o
Or,On,un(Age) = —w?(1y,dy)(ng, dy)uy(Age)
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Referring to Table 7.1, the scalar products between the wave vector d,, and the normal and tangent
vectors of I'y, are

0 9 9
(ny,d,;) = —cos <]2€Z> sin(n) — sin 712”2 cos(n) = —sin JQCZ +1),
0 9 0
(Tr,dy) = —sin (;Z) sin(n) + cos % cos(n) = cos —’; +n],

while the scalar products between the direction d,, of the wave and the normal and tangent vectors
of I'y are

(ng,dy) = cos <92M)Sin(77)sin % cos(n) = —sin %777 ’
(T¢,dy) = sin (?) sin(n) + cos % cos(n) =  cos %—77

We outline two linear combinations of w,, derivatives (7.2.1) that are small for small . We will use
these linear combinations to define quasicontinuity relations.

Lemma 7.2.1. Consider a corner point Aye. For n close to zero, the following relation holds

iw cos(Ore) (Ony, Uy — On,un) (Age) — cos (92ke> (Or\ Onytlyy — Or,On,un) (Ake) = O (0°) . (7.2.2)

Proof. On the one hand, the difference of the first order derivatives from (7.2.1) is

0 0
(Ongty — On,uy)(Age) = iw ( sin <;£ + n) + sin (;e - 77)) Uy (Age)

0
= —2iwn cos <’2d) Uy (Age) +O (773) .

On the other hand, the difference of the second order derivatives from (7.2.1) is

(a"'k aﬂkuﬁ - 87'4 aﬂzun)(Akf)

6 0 0 6
= —w? <_ cos <§p + r]) sin (;e —|—77> + cos (;é — 77> sin <l2€p — n)> U (Age)

1 1
= —w? <_2 sin (ekg + 277) + 5 sin (ng — 277)) un(Au)

= —w? (—2cos (Oe) + O (11%)) uy(Age)
= 2w?n cos (Ore) uy + O (?73) .

Combining these two relations yields the claim. O

Lemma 7.2.2. Consider a corner point Aye. For n close to zero, the following relation holds
) 0
—iw cos (;e) (Ong Uy + On,ty) (Ake) + (Ory Ony Uy + 07, On, uy) (Age) = O (772) . (7.2.3)
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7.2. Construction of corner conditions

Proof. First, adding the two first order derivatives from (7.2.1) gives

. . [0 .0
(Onp iy + On,un) (Agy) = —iw (sm (;é + 77) + sm(% — 77)) U (Ake)

= —2iwsin <€2’d> cos(n)uy(Ake)
= —2iwsin (02M> Uy (Age) + O (772) .

Second, adding the two second order derivatives from (7.2.1) gives

(07, Ony Uy + Or , On,ty) (Age)

0 O
= w? (sin <02M + 77) cos (ZM + n) + sin (;é - n) cos (;[ — 77)) U (Agr)

1 1
— W2 (2 sin (O + 217) + 5 sin (O — 277)) tn(Ae)
= w?sin (Oke) un(Au) +0 (772)

0 0
= 2w?sin <I;> cos (5) uy(Age) + O (n?).

Combining these two relations yields the claim. O

We now introduce the following quantity on each segment I'y

1

k= —O0On, Up.
® iw ng =n

Rewriting (7.2.2) and (7.2.3) using these new variables and dropping the O(n?) and O(n®) terms,
one gets the quasicontinuity relations

. 0
b cos(0uc) (1 — 1) (Are) = cos (%) (Oruin = Orio) (Ass) = 0
. Ous (7.2.4)
—iw cos <2) (¢ + @0) (Ake) + (Or 0k + Orp00) (Ake) = 0.
For a flat angle 0y = —m, the system corresponds exactly to the continuity relations
{ or(Age) —e(Are) = 0, (7.2.5)
Or, 0k(Ake) + O, 0e(Are) = 0.

We now recast these equations to have symmetric relations with respect to k& and £. A first symmetric
system of quasicontinuity relations is derived for corners such that 6, # —m, so for non flat corners
(such that Oy, # —m).

Lemma 7.2.3. Consider a corner point Aye such that Oy # —m. If relations (7.2.4) are satisfied,
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then the following second order quasicontinuity relations are also satisfied

. 2, 00
Orp ok (Age) — 1% (COS(QS; + cos < ; )) or(Age)

cos (%t
W cos (O Ore
=i5 (—COS(GM; -+ cos ( 5 )> wi(Age),
2 o) (7.2.6)
w COS (Uyk
oA d A
Or,0e(Are) 5 (CO (%) +COb< 5 ) ©o(Ake)
Lw cos (Opk, A
_15 o (é%k) + cos 5 or(Ake)
Proof. For Oy # —m, system (7.2.4) is equivalent to
. cos(Oxe) B
—iw——5"5 (0r = e) (Ake) + (Or, 06 — Or,00) (Ake) = 0,
005(92 ) (7.2.7)
—iw cos ( 15() (or + o) (Ake) + (07, 01 + Or,00) (Age) = 0.

The first relation of (7.2.6) is obtained by adding these two lines and dividing by 2, and the second
one is obtained by susbtracting the first line to the second and dividing by 2. O

A family of mixed symmetric systems of quasicontinuity relations parametrized by a coefficient
B # 0 can be constructed, a priori for corners such that 0y # —7, —37“, wich comes down to non
right angles.

Lemma 7.2.4. Consider a corner point Ay, such that Oxe # —7, —37”. Let B # 0. If relations

(7.2.4) are satisfied, then the following second order quasicontinuity relations are also satisfied

( S((Z2I;§> Or ok (Ake) + (5 — iw cos (02“>) on(Are)
< ;Csss 92k ))> Or,pe(Ae) + (5 +iwcos (92 )) Pe(Ake),

M
(1 + wc; 92£k>> Or,pe(Age) + <5 iw cos <9; )) o(Age)

- <—1 + ﬁlcos(@ék)> Oror(Ape) + (ﬂ + iw cos (92 )) Pr(Ake)-

w cos(Byr)

)—‘

(7.2.8)

Proof. Multiplying the first line of (7.2.4) by

the first relation of (7.2.8). Multiplying by m
is non singular for g # 0. O

W, and adding it to the second line leads to
)

instead gives the second relation. This algebra

Desingularization near cosfy = 0 and homogeneity considerations lead to take /3 proportional to
w cos(fye). For energy reasons explained in the sequel, see 7.4.3, the sign of § is also prescribed.
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7.3. Definition of a 24 order ABC with corner conditions

Therefore, we set
B = —|w]| cos Oye. (7.2.9)

We now consider relations (7.2.8) for any angle 0y,: for 6y = —7/2 or —37/2, the relations are
desingularized beforehand using the definition of 5. We note here that there exists works [74, 89|
treating this specific case of right angles, for which nj; and t, are colinear as well as t; and ny.

Remark 7.2.5. When adapting these relations for transmission conditions, considering a corner
on the interface of two subdomains €; and €);, one will have to dissociate the angles 6;, where ;
is the interior domain from 91«1) where 2, is the interior domain. Indeed, as 0,2[ + QM —27, see
Figure 7.2, notice the change of sign

ke Oi
COS (2) — — COS 7 .
Considering ; instead of €); as the interior domain comes down to taking the conjugate of each
coefficient from (7.2.6) or (7.2.8).

7.3 Definition of a 2" order ABC with corner conditions

We now come back to problem (7.1.3). Assume the boundary I' := Ungol Iy is polygonal and
decomposes in K > 3 segments, as illustrated in Figure 7.3. We set 'y :=Tgand I'_; :=Tg_1.
The segments are numbered consecutively and we use the notations previously defined: on a segment
Iy, the normal vector nj is pointing outside the computational domain €2; the tangential vector ty
varies counter-clockwise; and at the two corners, Ay, for £ = k41, the vectors 74 (Ag¢) are tangent
to I'y, and pointing outside.

For u € L*(T), we define p € @y H'(T'y) such that, for k =0,..., K — 1, the quantity ¢, = ¢|r, is
the variational solution of

1 02 )
1l— —— | vr =u, in I'g,
< 2w? Ot2
.w [ cos (Oke) Ore
8‘,-k(pk(Ak-g) — 15 <cos(’2‘2) + cos <2)> CPk(Aké) (731)

LW cos (Oxe) Ore

— 2| 2R = A =k+1.

12< COS(@)+COS<2)>@5( k@), {=k

The variational formulation of (7.3.1) is constructed as follows. Let ¢ € @pH!(T'y) verify (7.3.1).
Integrating by parts the equation on each 'y against the conjugate of 1 € @, H (') gives

K—1
1 gy, ¢y 1 3%%
— -— 2
Z(/F (0 + g g )b - 52 O (G Z/ Wi dy. (1.32)
k=0 & t=k=+1
The boundary I' is closed, and the corner terms can be regrouped, yielding
K—1
0 0 0
Z > (%T/Jk) (Ar) = Y (wwk + WW) (Ake).
k=0 £=k=+1 k=0

{=k+1
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Ag I,
I

Aos Q
@

Asy Iy

Figure 7.3 — Example of a polygonal domain € with boundary I' = U7 _T.

The continuity relations (7.2.6) ensure that at Ay one has

Opn— Ope 1 (Opr  Ope) o\ = 1 (Opr Opr\ — —
87-k k+a7’g 5_2<6Tk+87'g (wk+¢£>+2 87-k 87‘@ (¢k 1/)4)

_ i;J (cos (915@) (pr + @0) (P + he) + CCS:E‘Z';;(% — o) (On —W)) .

After substitution in (7.3.2), the variational formulation reads

Find ¢ € @, H'(T'y) such that for every test function v € &, H ('),
K—1

— 1 Opy Oy
_i - 0 — —  cos(Oge) . 733
T iw 2 <COS <§Z) (0r + o) (Y1 + e) + ﬁ(% — o) (Yr — W)) (Are) (7.3.3)
f=k+1

K—1 o
= Z / uy, dy.
k=0 VT

Theorem 7.3.1. Let u € L*(T'). There exists a unique solution ¢ € ®H(T'y) of the variational
formulation (7.3.3).

Proof. The well-posedness of the problem (7.3.3) amounts to show that a certain system of linear
ordinary differential equations admits a unique solution. Since it is ODE based, it can be reduced to
a system in finite dimension, so it is sufficient to show the uniqueness of the solution to obtain the
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7.3. Definition of a 24 order ABC with corner conditions

well-posedness. One can also invoke the Lax-Milgram Theorem since the bilinear form is continuous
and coercive as shown by the algebra below.

In the variational formulation (7.3.3), take 15, = @), for all k: the real part

K-1 1 |0y 2 K—1
lonl? + 5 | 5| | dv =TRe / uppdy |, (7.3.4)
implies that
1 3<Pk
2 + = < 2 U\ 72
H‘PHL ) Ot || - el () [Jull (1)

Taking u = 0 leads to ¢ = 0 which proves the uniqueness of the variational solution for u € L*(T),
and therefore its existence. O

Proposition 7.3.2. Define the operator T : u € L?(T') — ¢ € L*(T'), where ¢ is the unique
solution to (7.3.3) for a given u € L*(T"). One has TN g2y < 1.

Proof. Let u € L*(T). For T(u) = ¢ € @&, H'(I'y) C L*(T'), one has

(T(0). Tw)) g ry Z / (W

D |”

+ Re(ug%)) dy < Re (u, T'(u)) p2(ry - (7.3.5)

T
Tl _ .

Consequently, it holds ||T|| z(z2(r)) =
weLs () llwll 22 ()

The second order ABC deriving from operator T is introduced in the Helmholtz equation to obtain

{a(A;Q)“ = [ g (7.3.6)

ht — iwT (u 0 onT.

The associated weak formulation writes

Find u € H'(Q) such that Vv € H*(Q),

/Q (Vu - Vo — w?ur) dx — iw /1“ T(uw)vdy = /Qfﬁdx' (7.3.7)

Classical methods based on a coercive plus compact decomposition, Fredholm’s alternative and
a unique continuation principle yield the existence and uniqueness of the variational solution
u € H'(Q). The key step is the uniqueness of the solution. Assume the source term is f = 0.
One has (T'(u),u) 2y = 0 according to (7.3.7), and therefore T'(u) = 0 as a consequence of
(7.3.5). Referring to (7.3.6), the normal derivative dpu vanishes on I'. Now since problem (7.3.3)
is well posed, see Theorem 7.3.1, u necessarily vanishes on I'. Since d,u = v =0 on I', a unique
continuation principle yields u = 0 in 2.
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Chapter 7. Corner conditions for domain decomposition

7.4 Three domain decomposition algorithms using the 2*¢ or-
der ABC

7.4.1 DDM-1

Consider as in Figure 7.4 a decomposition of €2 into subdomains €2;, for 0 < ¢ < Ngopy — 1 with
Ndom > 2 the total number of subdomains. The exterior normal to a subdomain €2; is denoted as

n’L

A T,
I Qo
Ao
2 M
Asy Iy

Figure 7.4 — Example of a decomposition of an hexagonal domain.

A natural DDM writes: for all subdomain, initialize u € H'(€);) with square integrable normal
derivatives and iterate for p =0,1,...

(—A -t = f in Q;,
a . +1 9 . .
<8ni — 1w) u? = - (6‘11J + 1w> u? on 0€); N OQ,;, Vi # 1, (DDM-1)
gufﬂ = iwT(uPtl) on 9Q; NT.
n

We show that the algorithm is convergent. To do so, we define the following energy

o . .
( i 1w> u;

This quantity is well defined since iterating on p gives that the normal derivatives of u? are square
integrable. To prove the convergence of (DDM-1), we prove it is endowed to a decreasing energy,
see Subsection 6.2.3.

Naom—1

E? .=
Z /am\r

=0

2
d~.
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7.4. Three domain decomposition algorithms using the 2"! order ABC

Lemma 7.4.1. The algorithm (DDM-1) with zero source f = 0 has decreasing energy

2

p
EPL < BP Ha“ . (7.4.1)
L*(I)
Proof. One has by definition
Ivdom_1 a 2 ]Vdom_1 a 2
Ertl — / ( _ iw) u€+1 dy = / ( -+ 1w) dry.
Algebraic manipulations and an integration by parts on the closed border 9€; give
Ndom Ndom
EPT = / ( iw) u?| dy+4Re / —m}updw
Z oQ;\I" J Z o, —T onJ
Naom— 2
= iw | ub| dy
; /dQ AP (3n] ) !
Naom—1 |up|2 aup
— 4Re / iwdy, —2—dy + / —mupdfy
jz_(:) < 09, 2 a0;nr On/
Ndorn Ndorn
= — —iw | uf| dy—4Re / —Mup dry.
Z /BQ AP (6nﬂ ) ’ Z o0, nr OnJ
It follows from (7.3.5) and the condition on 9; N T that
EPtt = EP — 40? Re (T (uP), u”) 2y
< B? — 46 | T(u) |y
H ouP ||?
L2
and the claim is proven. O

This method lacks one original asset of DDMs, which is the full decoupling between local problems.
Indeed, since the operator T is non-local, see (7.3.3), all subdomains €); such that 9Q; N T # 0 are
coupled through the ABC.

7.4.2 DDM-2: subdomains decoupled

This second method, denoted DDM-2, restores the full-decoupling between subdomains. The
starting point is that the coupling between the subdomains on the boundary is due to the corner
conditions (7.3.1) which define the operator T. This operator is constructed through the solution
of a differential operator on the boundary, and it is possible to decouple this problem with another
level of DDM for the boundary problem.

Each corner must be indexed by k and ¢ to know at the intersection of which edges of T' it
corresponds, as before, and by 7 and j to know at the intersection of which subdomains it lies. The
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intersection of a subdomain’s border 0f2; and of an exterior edge I'y is noted I" 2 =00, NTy. Tt
can either be empty or be a segment, as illustrated in Figure 7.5. It is convenient to introduce the
two sets of points Ci, and F}, such that OI', = C! U F; and Ci N F;. = 0. The first set contains the
endpoints of ' that are corners of I' and writes

Ci = {AY, =T%NTJ,Vj,Vl # k}. (7.4.2)

The second set contains the endpoints of I'; that are interior points of 'y and writes

i={BY =T.NT, 5} (7.4.3)

In the case where I'i = (), which is frequent, we set by convention C{ = () and F; = 0.

10
A50

11 IEW! 11
Az A

Figure 7.5 — Example of a hexagonal domain split in two subdomains.

An auxiliary unknown ¢; j is introduced on each segment I'}, which stands for the local value of
the global quantity T'(u). Algorithm (DDM-1) is adapted as follows. As before, for all subdomains,
initialize u? € H'(£;) with square integrable normal derivatives. Then, for p =0, 1,..., solve for
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each subdomain

(—A —w?)ut pHlo— in €,
0 5} .
(a . Mg up+1 = _ (8111 + 1w> ? on 08} N 0N, Vj # 1, (DDM-2a)
o Wt = 1w<pf;g1 on It Vk.
1— == ) P (x) = u? (%), xel,
( 2w? Ot ok k
Ore a p+1
if3 cos ik . ¢ i
((1 + cos(ﬂ )> 37_ + (ﬁ — iw cos <’;)) gpp—H) (AY)
ke ) Om (DDM-2b)
16 cos (&£ ol e 9k ij ij i
(Orustt! + W’“) (BY) = (—Mi,k - iﬁwik) (BY), BY € 7.

= —m/2,—3n/2 is artificial. It is
systematlcally removed by takmg B =—|w| COS(@k[) see (7.2. 9)

The resolution of (DDM-2a)-(DDM-2b) can be done in parallel for all subdomain by solving local

problems in Q; x (4'}) with unknowns (uf™" (o} 1)k). To show the algorithm is convergent, we
use the decreasing energy method. Define

Naom—1 9 2

FP .= / ( - iw> ul| dy

; ( on\r |\ 00’

K—1 2
1 i3 cos ol . 0
+ - 1+ = 15 cos (%) F (B —iwcos [ =£ ol (AY)
Cos2(%) w  cos 0O, ot 2 ;
F=0 28 (1 - — 2/
A ect cos O
K—1
Y 5 Ol Wil (BLJ)>
=0
Bl eri
Remark 7.4.3. For 8 = bw cos(0x¢), the denominator on the second line rewrites
cos? (%L 0 0
2/ I—M = 3bw (cos? [ 2£) —1) = —2bwsin? | £ ,
cos Oy 2 2

and is positive for bsignw < 0. Therefore, in the sequel, we take b := —signw. It justifies the
choice 8 = —|w| cos(fke), so that FP is non negative.
It follows that 8 = —|w]| cos €, and that FP is indeed positive.

Lemma 7.4.4. The algorithm (DDM-2a)-(DDM-2b) with zero source f =0 has decreasing energy

Niom—1K—1

Frit<pr 2y Z/ 2w2|@]2|2+|at[¢]5‘) (7.4.4)
7=0
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Proof. Using the definition of the energy FP™! and of the quantities u? ! and 4,01 k , it gives

prtl
Naom—1

2
dry

9 p+1
(3ni 1w> u;

K-1 9 p+1 2
1 1,6 COS( kl) 8Q07k < <0k/)> 41 ..
+ = |t + iw cos P Al
P 2|w] sin? (%) |< w  cosBOy Ot} p- D) ik | (Ag)
Alech
K-1
ot 1 i
+ %‘wwﬁk + O 7t ‘ (BkJ))
k=0
B er]
Naom—1 9 2
- (L |G rw) e w
0 oa,\r | \OnJ
—1 . 0 P 2
1 ig cos (%) \ 9¢5, ( (9M)> o
+ —— || 14+ ——== Z 4| B +iwecos | — Pol(AY
— 2|w|sin’ (&) |< w cosbp | Oty B 2 ¢ (Agp)
Aec]
K-1
+ 5 ‘mpﬂ &M‘;Z‘ (B”))
=0
Bl er]

The integrals on the boundary are treated as in the proof of Lemma 7.4.1. One has

Naom—

2
7 Pl g
Z /an S\ <3n’ er) !
Ndom_l Ndom P
b . v / au-i
= — —iw | u;| d 4 Re —Ljwul.
; /amj\r (311] ) i T Z oa,nr ond Y
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For the terms concerning the non flat corners ALjZ, similar algebraic relations yield
K-1

2
- i cos (%-) 8%4 (5+ (9k )) (A%
- — iw cos
= 2|w\sm 2) w cosBye | 0T 9 e ke
A e
K—1 ) 0. » 9
1 iB cos (%£) | 9¢5, ( ) (9k£>) N
= |\t =+ (B —iwcos | — Pl (A
— 2Jw|sin” (%) ‘( w cosbpe | OTy b 9 @il (Agp)
Afjec)
K—1 o 5
L (iseos(%) 06, o, o
—4R 3 P Js NG
’ ; 2Jw|sin® (%) (‘” cosbp, Oy e 0Ty ~lweos 2 e | (Ase)
Afhec)
K—1 ) 0 » 9
1 iB cos (%£) | 9¢5, ( ) (91@4)) B
= |\t =+ (B —iwcos | — Pl (A
— 2Jw|sin” (%) ‘( w coslpe | OTy b 9 @il (Agp)
Afjec)
K—1 » -
! Oie’) 075 0950 . Okt o \(Aid
—4Re ;::0 m <1b OS< B ) 877 +bwcos€ke<ﬁﬂ o7, — 1w cos > oy (AY)
Afhec)
K-1 ) 0 » 9
1 iB cos (%£) | 9¢5, ( <9 >) N
= ——a |1t ==+ iw cos Pl (AP
= 2Jw|sin” (%) ‘( w coslpe | Oy b- 9 @il (Agp)
Ajee]
K-—1 (pp
—2Re RN AY
;;; e (AT (AL):
Kese]
Similarily, for the flat corners sz , it gives
R 2
S o |este—onet| BY)
£=0
Bl cF]
K-1 K1 g
— - (¥ J7 'Zj 1)
B? 7 Per]
Therefore, it holds that
Naom — Naom—
+1 _ TP
FPTt = P _ 4Re Z /Q - 6leu dvy —2Re Z Z 81’4 (A)
Aecjuﬂ

It remains to compute the two last terms. It follows from (DDM-2a) that for all j

a D
/69 mFﬁlwu’dv—z:/ —wupd’y—Z/ wg@Mupd’y
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Integrating by parts the equation from (DDM-2b) at iteration p on Fi against api , and suming over
all subdomain and edge indices j and ¢ yields

bl KZ [ e sz 5] -5 3 Stz
J gt 2w? atg Qw2 - ) 87‘[ 7t
j=0 (= £ Aecjur]
Ndom—1K—-1

]zz/uw

Naom—

Therefore FPTt = FP — 4 Z Z fFJ <w2|g0§-’7é|2 +1 ‘agtz

> d~ and the proof is ended. O

Algorithm (DDM-2a)-(DDM-2b) restored the full-decoupling with respect to the subdomains.
However, a coupling remains between u! 1 and (¥ '};1) k since in the DDM defining u? Tt is

imposed that 9, up+1 iwgpl.’k on each I'i | and that at the same time, in the DDM defining <pl k ,
it is imposed that <pp+1 — Oz <pp+1 (2w?) = u?*! on T'.. Decoupling the systems (DDM-2a) and

(DDM-2b) of the DDM will allow to solve the equation on u?*" as a classical Helmholtz boundary
value problem.

7.4.3 DDM-3: subdomains and unknowns decoupled

In this section, we modify the algorithm DDM-2 by decoupling (DDM-2a) from (DDM-2b) at
the price of introducing a new auxiliary unknown on each edge I‘};. This unknown, denoted ; 1,
represents the Dirichlet trace of u; on F};.

Initialize u) € H'(f2;) with square integrable normal derivatives on each subdomain, and (cpg ek €

®rHY (L), ( zQ,k)k € @, L*(T'}) on the exterior boundary of each subdomain. For p = 0,1,.. ., solve
for each subdomain

2y, p+l i
J— — . = 19
(—A —w?)ul f in
8 . p+1 _ a O p y 3
o W) i = Y +iw ) u; on 9Q; NI, Vi # 1, (DDM-3a)
;)i —iw uf“ = iw (prk — fk) on I't, Vk,
n ’ ’
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and for each edge

1 82 p+1 p+1 i
l_ngw Cig (X) =i} (%), x eIy,
1 oul .

P00+ U1 () = 5 L)+ uf (%), x €T},

i3 cos (%)) op?L! . Ore p+1\ (A

((1+ w cos B ) oty | dwcos 2 ik (Arr)
B ig cos (%)) 9¢%, : One ij i i
_<<_1+wcosou To, T (Briweos (7)) | (A7), AL e

(el + 0ml ) BY) = (1wl — Oruhe) (BY), B € Fj.

(DDM-3b)
To show convergence of (DDM-3a)-(DDM-3b), as for (DDM-1) and (DDM-2a)-(DDM-2b), we show
the algorithm is endowed to a decreasing energy. Define
dry + Z /

o .\ ,
(ani )
k=0

K—1 . 0 p 2
i cos (%¢) \ 0%y ), ( <9u)> »
E 1+ — =+ iw cos :
2|w|s1n 2 ) ‘( w cos By > ory, - 2 ik

Naom—1

(2

2
‘Pf,k + w'ﬁk’ dy

(A1)
=
allec
LSl 2
Z o et ot @)
=0
}_

Ndgom—1K—-1

_pr z; Z/

2
@ﬁk + ¢£k‘ dy.

Lemma 7.4.5. The algorithm (DDM-3a)-(DDM-3b) with zero source f =0 has decreasing energy

Ngom—1K—1

a2 3 Z/ (26216 2 + 106,672 .
7=0

Proof. Similar computations to the ones of the proof of Lemma 7.4.4 give

Ngom—1K—-1 Ngom—1 K-1 850
é
G =@ —are 3 3 [ LT a - ome 5 > Gry WA
0 =0
i= 7= AECJU]:J

Integrating the first equation of system (DDM-3b) at iteration p on F‘Z against <p§ , and summing
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over all subdomain and edge indices j and ¢ gives

Naom—1K -1 o 2 Niom—1 K-1 P
(7 + g e LN
90]5 oT "Z
Jj=0 =0 =0 £
AECe .7:
Naom —1K—1
-2 X / o
7=0
and so the result is proven. O

7.5 Numerical tests

In this Section, we present a few results obtained on the discretizations of the global problem
(7.3.7) and (DDM-1). These are preliminary results, and so far their analysis is qualitative. The
simulations were performed using Gmsh and GetGP [57, 40].

The problem is slightly different to the model (7.1.3), instead of a compact source we study the
problem of a plane wave scattered by a disc

(—A - w) = 0 inQ,
(1 - 5270¢)0qu —iwu = g onT,

with g = 0 on Ty, the boundary of the obstacle and g = ¢'"° and corresponds to an incident plane
wave that comes from the right on I'ey; the exterior boundary. The real part of the exact solution

is plotted in Figure 7.6.

u-real part ¥
ERT] -0.00214 111 z x

Figure 7.6 — Real part of the solution.

To visualize the differences between the various discretized methods, Figures 7.7, 7.9 and 7.10
represent the modulus of the computed solution and the error with respect to the exact solution.
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Figure 7.7 corresponds to the discretization of the global problem with ABC
Ot — iwT'(u) = 0. (7.5.1)

On the left is represented the solution for the non local operator T as defined in Proposition 7.3.2,
corresponding to the discretization of system (7.3.7) with second order ABC. On the right is
represented the solution for a different operator T that imposes 0,9,u(Ake) = 0 and neglects the
corner terms of the variational formulation (7.3.3). Comparing the 2°¢ order method to the one
without corner treatment, we observe that the absolute value of the wave is less oscillating. The
error is concentrated at the right corner for both methods, but with a stronger amplitude without
corner treatment.

Figures 7.9 and 7.10 correspond to the discretization of the DDM associated to (7.5.1) by defining
at iteration p and for each subdomain index

Onul = iwT (ul). (7.5.2)

On the left is the solution to (DDM-1) and on the right to the same domain decomposition but
without second order corner treatment. In Figure 7.9 the domain is decomposed into 3 subdomains,
and in Figure 7.10 into 6 subdomains. The corresponding meshes are given in Figure 7.8.

The interpretation of the observations in these cases is not straightforward. Also, the functional
spaces used with GetDP are IP; elements

- h
u € P1(QF) and  T(u)"[rroe, = (¢ip)e € P1(TL).

Consequently, O,ul? is in Py on each F};h, and not in Py as the auxiliary unknowns gpﬁ > Whereas at
the continuous level ¢; ; stands for (iw)*lanui and they lie in the same space.

Lastly, the errors obtained with the first order ABC (6.2.2) for the global problem and the DDM
are represented in Figure 7.11: for each method, the new second order ABC improves the error.
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-
-
uNorm - real part uNorm - real part Y
[ 0558 112 [ 0574 115 z x
[ - [ ]
err - real part err -real part Y
0 00543 0.109 [ 0.0904 0.181 z x
[ - . [

Figure 7.7 — Modulus (above) and error on the real part with respect to the exact solution (below)
for the discretization of the global problem with 2°¢ order ABC and with corner treatment (7.3.7)
(left) and without corner treatment (right).
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Figure 7.8 — Meshes of the 3 subdomains decomposition (above), and of the 6 subdomains decom-
position (below).
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- -
-
u_ddm_abs - real part u_ddm_abs - real part Y
0 0561 112 0 0572 114 z x
[ - . [ - .
uerr_ddm - real part uerr_ddm - real part Y
0 0.108 0216 0 0.144 0.288 z x
[ - . | - .

Figure 7.9 — Modulus (above) and error on the real part with respect to the exact solution (below)
for the discretization of the DDM on 3 subdomains with 2°¢ order ABC and with corner treatment
(DDM-1) (left) and without corner treatment (right).
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- -
v -
u_ddm_abs - real part u_ddm_abs - real part Y
[ 0.571 114 0 0.563 113 z X
[ - [ - am

uerr_ddm - real part uerr_ddm - real part Y
0 0.143 0.285 0 0.107 0.214 z x

Figure 7.10 — Modulus (above) and error on the real part with respect to the exact solution (below)
for the discretization of the DDM on 6 subdomains with 2°¢ order ABC and with corner treatment
(DDM-1) (left) and without corner treatment (right).
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err - real part
0118 0.236
e

°

uerr_ddm - real part
0 0.141 0.282
I

uerr_ddm - real part

0.142 0284

Io

Figure 7.11 — Errors between the computed solutions and the exact solution with the ABC of order
1 (6.2.2) for the global problem (above) the DDM with 3 subdomains (middle) and the DDM with
6 subdomains (below).
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Résumé

Dans une premiére partie, des formulations variationnelles associées aux équations mal posées de Maxwell
résonantes sont construites. Le caractére mal posé est lié & une dégénérescence des équations a I'intérieur
du domaine, entrainant la non-unicité et la singularité des solutions. L’ajout de viscosité dans les équations
permet de les désingulariser, et c’est par un procédé d’absorption limite qu’on identifie la solution physique,
lorsque ce paramétre de viscosité tend vers zéro. Il reste que la dégénérescence a l'intérieur du domaine
sépare le probléme a la limite en deux équations sur des domaines différents couplés par leur interface le long
de laquelle les solutions explosent. Ce travail caractérise pour la premiére fois la solution limite de maniére
explicite comme solution d’une formulation bien posée. Pour cela, une décomposition ad hoc en parties
réguliére et singuliére est proposée. Cette formulation a la limite permet de calculer une approximation
numérique de la solution physique des équations de Maxwell résonantes sans passer par une désingularisation,
qui induit des contraintes de maillage. C’est une étude motivée par la modélisation des résonances hybrides
dans un plasma de fusion, dans un régime ou les ions sont supposés figés, et la viscosité infiniment petite.
La singularité de la solution n’est pas un artefact du modéle mathématique et correspond a un transfert
d’énergie d’une onde envoyée dans le plasma aux particules.

Ce probléme de couplage d’équations sur différents domaines a travers leur interface nous améne a la
seconde partie, qui concerne les méthodes numériques de décomposition de domaine. En présence de coins
et de points de croisement, lorsqu’on utilise un mailleur automatique pour décomposer le domaine par
exemple, il est nécessaire de traiter ces points pour obtenir des conditions d’absorption ou de transmission
d’ordre supérieur a 1. Nous définissons des conditions absorbantes d’ordre 2 pour ’équation de Helmholtz
sur un domaine & coins, avec en vue des conditions de transmission traitant les points de croisement. Un
point original de ce travail est que chaque algorithme de décomposition de domaine associé a ces conditions
absorbantes que 1’on propose est 1ié & une énergie décroissante, et converge.

Abstract

In a first part, we derive variational formulations associated to the a priori ill-posed resonant Maxwell’s
equations. The ill-posedness is related to the degeneracy of the equations inside the domain, resulting in
the non-uniqueness of solutions, and in their singular behavior. Adding a viscosity term desingularizes
the equations, and it is by a limit absorption principle that we identify the physical solution, when this
non-negative viscosity parameter goes to zero. It remains that the degeneracy inside the domain separates
the problem at the limit into two equations on different domains coupled through their interface, on which
the solutions blow up. This work gives a new explicit characterization of the limit solution as a solution of
a well-posed formulation. To do so, an ad hoc decomposition in regular and singular parts is performed.
This formulation of the limit problem allows to compute an approximation of the physical solution to the
resonant Maxwell’s equations without relying on its desingularized form, which induces mesh constraints.
This study is motivated by the modelization of hybrid resonances in fusion plasma, in a regime where ions
are supposed to be static, hence the infinitely small viscosity. The singularity of the solution is not an
artefact of the mathematical model, and corresponds to a transfer of energy from an incoming wave to the
particles.

This coupling of equations set on different domains via their interface leads us to the second part, which
concerns domain decomposition methods. When there are corners or cross points, e.g. if an automatic
mesher was used to decompose the domain, it is necessary to define conditions at these points in order to
have absorbing or transmission conditions of order greater than 1. We define absorbing boundary conditions
of order two for Helmholtz equation on a domain with corners, with the further intention of deriving
transmission conditions at cross points of the mesh. An original feature of this work is that each domain
decomposition algorithm associated to these absorbing conditions is endowed with a decreasing energy and
converges.

Keywords: Mazwell, Helmholtz, plasma heating, upper hybrid resonance, degenerate elliptic, singularities,
weighted Sobolev, manufactured solutions, mized variational formulations, FE, DDM, ABC, corners
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